Filip Marić

*Faculty of Mathematics, University of Belgrade

PAT 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Table of contents

1 Introduction

- 2 Basic syntax and automated provers
- 3 Natural deduction
- 4 Isar: a language of structured proofs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

5 Functional programming

Overview

1 Introduction

- 2 Basic syntax and automated provers
- 3 Natural deduction
- 4 Isar: a language of structured proofs
- 5 Functional programming

 Isabelle is a generic interactive theorem prover, developed by Lawrence Paulson (Cambridge) and Tobias Nipkow (Munich).
 First released in 1986.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- https://isabelle.in.tum.de/
- Archive of formal proofs (https://www.isa-afp.org/)

Isabelle/HOL

It allows mathematical formulas to be expressed in a formal language and provides tools for proving those formulas in a logical calculus.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Integrated tool support for:
 - Automated provers
 - Sledgehammer: powerful proof search
 - Counter-example finding
 - Code generation
 - LATEX document generation

- Isabelle/HOL Isabelle's incarnation for Higher-Order Logic
- FOL extended with functions and sets, polymorphic types, ...

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- ML-style functional programming
- "HOL = functional programming + logic"

A Course at University of Belgrade

- Introduction to interactive theorem proving
- Elective course on the 4. year of undergraduate studies of informatics
- 12 weeks of teaching (weekly 1.5 hours lectures and 1.5 hours labs)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- Students have some background knowledge in logic and functional programming
- Two parts:
 - Logic and mathematics
 - Functional programming and verification

Approach

- Recapitulation of many concept that students have informally used, but through the lens of interactive theorem proving
- Students need to understand precise, rigorous communication and reasoning (both in abstract mathematics, and in computer programming)
- Slow pace
- Proof assistant is a tool, and not the aim
- Students need not become experts in using some concrete proof assistant
- Concepts are introduced only when necessary, usually through examples
- Using automation is welcome (except in the beginning, when the concept of proof is introduced)

This summer school

We have 4 hours total

- The main aim is to give a brief introduction to Isabelle/HOL to those who did not have any experience with it
- The other aim is to offer a slightly different didactic to proof assistants than the usual one
 - How to teach proof assistants to support better understaning and provide rigour to elementary high-school/undergraduate mathematics and computer science?
 - As close to every day mathematics as possible (focus only on the concepts that students do in elementary mathematics)
 - Focus is not on what proof assistants can do and how are they professionally used, but on how to use them "without tears" as a supplement to introductory math/cs curriculum
- Many exercises that we can do together

Introductory example

- The course starts with an advertisement of interactive theorem proving
 - A brief history
 - Major successes
- Instead of the standard "bottom-up" approach where we strictly define notions before using them, we use a "hands-on" approach where we try to give intuition and formally define notions along the way, only when necessary.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Example: absolute value

- What is an Isabelle/HOL theory?
- We define some mathematical concept.
- We state some of its properties (in form of lemmas).
- We prove those lemmas:
 - using automated theorem provers or
 - we write the proof in some language and the system checks that proof.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- We start with a very simple example of absolute value function.
- We formalize the beginning of https://en.wikipedia.org/wiki/Absolute_value

Definition:

$$|x| = egin{cases} x, & ext{if } x \geq 0, \ -x, & ext{if } x < 0. \end{cases}$$

Properties:

 $|a| \ge 0$ $|a| = 0 \iff a = 0$ $|ab| = |a| \cdot |b|$ $|a + b| \le |a| + |b|$

Non-negativity Positive-definiteness Multiplicativity Subadditivity, specifically the triangle inequality

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Wikipedia proof

"Non-negativity, positive definiteness, and multiplicativity are readily apparent from the definition.

To see that subadditivity holds, first note that |a + b| = s(a + b)where $s = \pm 1$, with its sign chosen to make the result positive. Now, since $-1 \cdot x \le |x|$ and $+1 \cdot x \le |x|$, it follows that, whichever of ± 1 is the value of *s*, one has $s \cdot x \le |x|$ for all real *x*. Consequently, $|a + b| = s \cdot (a + b) = s \cdot a + s \cdot b \le |a| + |b|$, as desired."

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

-Introduction

DEMO 1: AbsoluteValue.thy

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Main takeaways

- Isabelle definitions are very similar to functional programming
- Powerful automation
- Declarative proof language makes proofs very similar to everyday mathematical proofs
- Details of syntax are going to be given throughout the course

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Basic syntax and automated provers

Overview

1 Introduction

- 2 Basic syntax and automated provers
- 3 Natural deduction
- 4 Isar: a language of structured proofs
- 5 Functional programming

Basic syntax and automated provers

Syntax

- Students must be comfortable in translating natural language formulations into formal statements
 - Syntax of the proof assistant
 - Typing symbols
 - Writing logically correct formulae (much deeper skill)
- First lab exercises require to write given statements and prove them using automation (by auto).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Basic syntax and automated provers

Examples

- If everyone who lies also steals, and there is someone who lies, then there is somene who steals.
- If no homework is fun, and some reading is homework, then some reading is not fun.
- 3 If there is a shoe that fits every leg, then for every leg there is a shoe that fits it. Does the opposite hold?
- In one village knights always tell the truth, and knaves always lie. Visitor asks the person A if he is a knight, but did not understand his answer. Person B explains that A said that he is a knave, but then C tells that B lies. Prove that C must be a knight.
- 5 If everyone loves a lover and John loves Mary, then does lago love Othello?

Basic syntax and automated provers

- Let f be a binary operation that is associative, has a left-identity element, and all elements have a left inverse. Show that left inverse is always also the right inverse.
- Is every symmetric and transitive relation also reflexive? Is there some additional condition that guarantees it?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Basic syntax and automated provers

Assume that Pinocchio always lies and says: "All my hats are green". Which of the following must be true.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1 Pinocchio has no green hats.
- 2 Pinocchio has only one green hat.
- 3 Pinocchio has no hats.
- 4 Pinocchio has at least one hat.
- 5 Pinocchio has at least one green hat.

Basic syntax and automated provers

Demo

DEMO 2: BasicSyntax.thy

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

-Natural deduction

Overview

1 Introduction

- 2 Basic syntax and automated provers
- 3 Natural deduction
- 4 Isar: a language of structured proofs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

5 Functional programming

Natural deduction

- Two styles of proof in Isabelle/HOL:
 - Tactics (apply style proofs)
 - Isar (readable, structured proofs)
- Although readable proofs are desirable (easier to read, write and maintain), under the hood everything boils down to applying natural deduction rules
- Natural deduction is like an assembly language of interactive theorem proving
- It is good if the students have some understanding of what is happening "under the hood"

Rules for propositional logic

うせん 山田 (山田) (山) (山) (山) (山)

Rules for propositional logic

(ロト (個) (E) (E) (E) (E) の(C)

Natural deduction i Isabelle - rules

$$\begin{array}{rcl} notl & : & (P \Longrightarrow False) \Longrightarrow \neg P \\ notE & : & \llbracket \neg P; P \rrbracket \Longrightarrow R \\ conjl & : & \llbracket P; Q \rrbracket \Longrightarrow P \land Q \\ conjunct1 & : & P \land Q \Longrightarrow P \\ conjunct2 & : & P \land Q \Longrightarrow Q \\ conjE & : & \llbracket P \land Q; \llbracket P; Q \rrbracket \Longrightarrow R \rrbracket \Longrightarrow R \\ disjl1 & : & P \Longrightarrow P \lor Q \\ disjl2 & : & Q \Longrightarrow P \lor Q \\ disjE & : & \llbracket P \lor Q; P \Longrightarrow R; Q \Longrightarrow R \rrbracket \Longrightarrow R \\ impl & : & (P \Longrightarrow Q) \Longrightarrow P \longrightarrow Q \\ impE & : & \llbracket P \longrightarrow Q; P; Q \Longrightarrow R \rrbracket \Longrightarrow R \\ mp & : & \llbracket P \longrightarrow Q; P \rrbracket \Longrightarrow Q \end{array}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

-Natural deduction

- Introduction rules apply (rule <rule_name>).
- Elimination rules apply (erule <rule_name>).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Example proof

```
lemma "~(A | B) --> ~A & ~B"
apply (rule impI)
apply (rule conjI)
apply (rule notI)
apply (erule notE)
apply (rule disjI1)
apply assumption
apply (rule notI)
apply (erule notE)
apply (rule disjI2)
apply assumption
done
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

-Natural deduction

DEMO 3: NaturalDeduction.thy

└─ Natural deduction

Rules for first order logic

$$allI : \bigwedge x. P x \Longrightarrow \forall x. P x$$
$$allE : \llbracket \forall x. P x; P ?x \Longrightarrow R \rrbracket \Longrightarrow R$$
$$exI : P ?x \Longrightarrow \exists x. P x$$
$$exE : \llbracket \exists x. P x; \bigwedge x. P x \Longrightarrow Q \rrbracket \Longrightarrow Q$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

-Natural deduction

DEMO 3: NaturalDeduction.thy (cont.)

-Natural deduction

Rules for classical logic

 $\begin{array}{rcl} ccontr & : & (\neg P \Longrightarrow False) \Longrightarrow P \\ classical & : & (\neg P \Longrightarrow P) \Longrightarrow P \end{array}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

-Natural deduction

DEMO 2: NaturalDeduction.thy (cont.)

Natural deduction rules for sets

 $IInI1 \quad c \in A \Longrightarrow c \in A \cup B$ $IInI2 \quad c \in B \implies c \in A \cup B$ $UnE : [c \in A \cup B; c \in A \Longrightarrow P; c \in B \Longrightarrow P] \Longrightarrow P$ Intl : $[c \in A; c \in B] \implies c \in A \cap B$ Int E: $[c \in A \cap B; [c \in A; c \in B]] \Longrightarrow P$ subset I: $(\bigwedge x. x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$ subset D : $[A \subseteq B; c \in A] \implies c \in B$ Compl1 : $(c \in A \Longrightarrow False) \Longrightarrow c \in -A$ ComplD : $c \in -A \Longrightarrow c \notin A$

-Natural deduction

DEMO 3: NaturalDeduction.thy (cont.)

└─ Isar: a language of structured proofs

Overview

1 Introduction

- 2 Basic syntax and automated provers
- 3 Natural deduction
- 4 Isar: a language of structured proofs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

5 Functional programming

└─ Isar: a language of structured proofs

lsar

- Imitate "pen-and-paper" proofs as much as possible
- All proofs must be understandable by reading their text, without running the prover
- Combine with powerful automation
 - Proofs should provide justification
 - Proofs should provide explanation
 - Make a balance write readable proofs and automate trivial parts

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

└─ Isar: a language of structured proofs

How to teach Isar?

- Language Isar allows to express the same proof in many different ways
- Two main styles:
 - backward proofs (from the goal towards assumptions)
 - forward proofs (from the assumptions towards goals)
- Some patterns can be recognized in many proofs
- Introduce the proof language through carefully chosen examples that show different techniques an patterns
- In their previous courses student did not prove formulae of pure logic, but they have experience in proving facts about sets, relations, and functions
- Use those domains to introduce Isar

└─ Isar: a language of structured proofs

A set example

• Prove
$$(A \cup B)^c = A^c \cap B^c$$

Top-level proof structure:

```
lemma "-(A \cup B) = -A \cap -B"

proof

show "-(A \cup B) \subseteq -A \cap -B"

sorry

show "-A \cap -B \subseteq -(A \cup B)"

sorry

qed
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

└─ Isar: a language of structured proofs

Backward proof

- Proof is either applcation of an automatic proof method by ... or consists of a proof...qed block
- The keyword proof can be followed by a proof method that transforms the goal
- If method is not specified the system chooses a method based on the structure of the current goal
- In this example the method rule equalityI is chosen

$$equalityI \quad : \quad [\![A \subseteq B; B \subseteq A]\!] \Longrightarrow A = B$$

- The proof state becomes: proof (state) goal (2 subgoals): $1. -(A \cup B) \subseteq -A \cap -B$
 - 2. $-A \cap -B \subseteq -(A \cup B)$
- The proof continues by explicitly stating and proving each goal

└─ Isar: a language of structured proofs

Each subgoal can be proved by using a backward proof

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

```
lemma "-(A \cup B) = -A \cap -B"
proof
    show "-(A \cup B) \subseteq -A \cap -B"
    proof
        fix x
        assume "x \in -(A \cup B)"
        show "x \in -A \cap -B"
            sorry
    qed
next
    show "-A \cap -B \subseteq -(A \cup B)"
    proof
        fix x
        assume "x \in -A \cap -B"
        show "x \in -(A \cup B)"
            sorry
    qed
qed
```

└─ Isar: a language of structured proofs

In both subgoals the proof keywords triggers the rule subsetI method.

subset
$$I$$
: $(\bigwedge x. x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$

The first subgoal becomes:

$$\bigwedge x. \ x \in -(A \cup B) \Longrightarrow x \in -A \cap -B$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

In Isar this becomes fix ... assume ... show ...

└─ Isar: a language of structured proofs

Forward proof

- Let us focus on the first subgoal
- At this point we have both an assumption that we can use $(x \in -(A \cup B))$, and the goal that should be proved $(x \in -A \cap -B)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ● ●

- From the assumption we can deduce some new facts
- We can state them using the keyword have:

```
fix x
assume "x \in -(A \cup B)"
have "x \notin A \cup B"
...
show "x \in -A \cap -B"
sorry
```

└─ Isar: a language of structured proofs

Proof context

- If not stated otherwise, in each (sub)goal the prover "sees" only the formula that should be proved
- In order to use avaiable assumptions they must be brought in the proof context
- There are various (equivalent) ways to do that (e.g., from, using, ...)

```
fix x
assume "x \in -(A \cup B)"
from 'x \in -(A \cup B)'
have "x \notin A \cup B"
by (rule complD)
show "x \in -A \cap -B"
sorry
```

```
fix x
assume "x \in -(A \cup B)"
have "x \notin A \cup B"
using 'x \in -(A \cup B)'
by (rule complD)
show "x \in -A \cap -B"
sorry
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

└─ Isar: a language of structured proofs

Abbreviations

Many abbreviations (some are deprecated)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

- this the last statement
- then from this
- hence then have
- thus then show
- with ... from this and ...

```
fix x
assume "x \in -(A \cup B)"
then have "x \notin A \cup B"
by (rule compID)
show "x \in -A \cap -B"
sorry
```

└─ Isar: a language of structured proofs

Demo

DEMO 4: Isar.thy

(ロト (個) (E) (E) (E) (E) のへの

Isar: a language of structured proofs

Reasoning by cases

Let us focus on the second subgoal

```
show "-A \cap -B \subseteq -(A \cup B)"
proof
    fix x
    assume "x \in -A \cap -B"
    then have "x \notin A" "x \notin B"
        by auto
    show "x \in -(A \cup B)"
    proof
        assume "x \in A \cup B"
        show False
            sorry
    qed
qed
```

└─ Isar: a language of structured proofs

Reasoning by cases (disjunction elimination)

- Currently we have that x ∉ A, x ∉ B, and x ∈ A ∪ B, and we need to derive a contradiction.
- It easily follows by considering cases x ∈ A and x ∈ B that follow from x ∈ A ∪ B.
- If we bring a disjunctive fact such as x ∈ A ∪ B as the first fact into the proof context, the proof applies reasoning by cases (elimination rules such as UnE, disjE, ...).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

└─ Isar: a language of structured proofs

```
assume "x \in A \cup B"

then show False

proof

assume x \in A"

with 'x \notin A' show False

by - (erule notE)

next

assume x \in B"

with 'x \notin B' show False

by - (erule notE)

qed
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

└─ Isar: a language of structured proofs

Demo

DEMO 4: Isar.thy (cont.)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

└─ Isar: a language of structured proofs

Introducing universal quantifiers

- Prove that every symmetric transitve relation, with no isolated elements is reflexive.
- Since the goal starts with the universal quantifier, proof automatically chooses the *alll* rule – prove the statement for an arbitrary element *x*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

```
lemma

assumes "\forall x. \exists y. R \times y"

sym: "\forall x y. R \times y \longrightarrow R y x"

trans: "\forall x y. R \times y \longrightarrow R y x"

shows "\forall x. R \times x"

proof

fix x

show "R \times x"

sorry

qed
```

└─ Isar: a language of structured proofs

Eliminating existential quantifiers

 We can always name an element for which we know it exists using the keyword obtain

lemma

```
assumes "\forall x. \exists y. R \times y"
         sym: "\forall x y. R x y \longrightarrow R y x"
         trans: "\forall x y. R x y \longrightarrow R y x"
    shows "\forall x. R \times x"
proof
    fix x
    from assms(1) obtain y where "R \times y"
         by auto
    with sym have "R \ v \ x"
         by auto
    from "R \times y" "R y x" show "R \times x"
         using trans
         by auto
qed
```

└─ Isar: a language of structured proofs

Proof by contradiction (rule ccontr)

```
Prove the "drinkers paradox":

\exists d. drinks \ d \longrightarrow (\forall x. drinks \ x).
```

```
lemma "\exists d. drinks d \longrightarrow (\forall x. drinks x)"

proof (rule ccontr)

assume "\neg?thesis"

then have "\forall d.\neg(drinks d \longrightarrow (\forall x. drinks x))"

by auto

then have "\forall d.drinks d \land \neg(\forall x. drinks x)"

by auto

then have "(\forall d.drinks d) \land \neg(\forall x. drinks x)"

by auto

show False

by auto

qed
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

└─ Isar: a language of structured proofs

Proof by cases (cases)

 Alternative proof considers cases when everybody drinks and when there is someone who does not drink.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

```
lemma "\exists d. drinks d \longrightarrow (\forall x. drinks x)"
proof (cases "\forall x. drinks x")
    case True
    then show ?thesis
        by auto
next
    case False
    then obtain d where "\neg drinks d"
        by auto
    then have "drinks d \longrightarrow (\forall x. drinks x)"
        by auto
    then show ?thesis
        by auto
qed
```

└─ Isar: a language of structured proofs

Exercises

- Let us do some exercises about functions
- Library predicates inj, surj, bij hold for injective, surjective, and bijective functions
- $f \circ g$ denotes the function composition
- f ' A denotes the image of the set A under the function f

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

■ f - ' A denotes the inverse image the set A under the function f

└─ Isar: a language of structured proofs

Moreover-ultimately

- Often the final statement follows from several intermediate statements
- A special moreover...ultimately syntax can abbreviate such proofs so that there is no need to explicitly recall intermediate statements and insert them into the proof context of the final statement

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

└─ Isar: a language of structured proofs

Moreover-ultimately

```
lemma
   assumes "surj f" "surj g"
   shows "surj (f \circ g)"
   unfolding surj_def
proof
   fix y
   obtain z where "f z = y"
       using 'surj f' unfolding surj_def by metis
   moreover
   obtain x where "g x = z"
       using 'surj g' unfolding surj_def by metis
   ultimately
   show "\exists x. y = (f \circ g)x"
       unfolding comp_def by auto
qed
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

└─ Isar: a language of structured proofs

Demo

DEMO 4: Isar.thy (cont.)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

└─ Isar: a language of structured proofs

Numbers

- Several number types (nat, int, rational, real, complex)
- Choosing appropriate number type is sometimes essential
- Be careful to specify number type, since Isabelle often cannot automatically deduce exact number type
- You can apply all field laws on rational, real and complex numbers
- You can apply usual subtraction laws on integers, but not on naturals
- Proving inequalities is usually much harder then proving equalities
- Proving rational expressions is usually harder than proving polynomials

- ロ ト - 4 回 ト - 4 □ -

. . . .

└─ Isar: a language of structured proofs

Field simps

 Many equational theorems about rational and real numbers can be proved by using simplifier with algebra_simps and field_simps collections of theorems

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

lemma

fixes x y :: real shows " $(x + y)^2 = x^2 + 2 * x * y + y^2$ " by (simp add: power2_eq_square algebra_simps)

└─ Isar: a language of structured proofs

Equational reasoning (also-finally)

- In classical mathematics we usually reason by writing chains of equalities (or consistently oriented inequalities, mixed with equalities)
- \blacksquare This reasoning is implicitly based on transitivity of =, \leq , \geq
- Isabelle has special syntax also...finally for this type of reasoning

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

└─ Isar: a language of structured proofs

Equational reasoning (also-finally)

```
lemma

fixes x y :: real

shows "(x + y)^2 = x^2 + 2 * x * y + y^2"

proof-

have "(x + y)^2 = (x + y) * (x + y)"

sorry

also have "... = x * (x + y) + y * (x + y)"

sorry

...

also have "... = x<sup>2</sup> + 2 * x * y + y<sup>2</sup>"

sorry

finally show ?thesis
```

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

qed

└─ Isar: a language of structured proofs

- method subst ... makes a substitution of an eqation (rewrite rule) within the current goal
- method subst (asm) ... makes substitution of an eqation (rewrite rule) within the current assumptions

Some basic theorems that can be used as rewrite rules:

• add.assoc:
$$(x + y) + z = x + (y + z)$$

- add.commute: x + y = y + x
- mult.assoc: (x * y) * z = x * (y * z)
- mult.commute: x * y = y * x
- distrib_left: (x + y) * z = x * z + y * z
- distrib_right: z * (x + y) = z * x + z * y

theorems can be instantiated

■ add.assoc[of 1 2] gives (1+2) + z = 1 + (2+z)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

add.assoc[where x=1 and y=2]

└─ Isar: a language of structured proofs

Demo

DEMO 5: Numbers.thy

(ロト (個) (E) (E) (E) (E) のへの

└─ Isar: a language of structured proofs

Induction over natural numbers

- Induction is the fundamental property of naturals
- Special syntactic support for induction proofs

lemma

```
n :: nat
shows "(\sum x \in \{0.. < n+1\}) = n * (n+1) \text{ div } 2"
proof (induction n)
case 0
show ?case by simp
next
case (Suc n)
then show ?case by simp
qed
```

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

└─ Isar: a language of structured proofs

Demo

DEMO 5: Numbers.thy (cont.)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

└─ Isar: a language of structured proofs

Defining natural numbers

- Natural numbers can be defined as an algebraic datatype datatype nat = Zero | Suc nat
- Functions can then be defined using primitive recursion

```
primrec add :: "nat \Rightarrow nat" where
"add x Zero = x"
| "add x (Suc y) = Suc (add x y)
```

Proofs can use induction over the algebraic datatype

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

-Functional programming

Overview

1 Introduction

- 2 Basic syntax and automated provers
- 3 Natural deduction
- 4 Isar: a language of structured proofs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

5 Functional programming

Functional programming

Datastructures

 Algebraic datatypes and primitive recursion can used to define classic programming datastructures (lists, trees, ...)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

```
datatype 'a List =
Empty
| Cons 'a "'a List"
datatype 'a Tree =
```

```
Nil
Node 'a "'a Tree" "'a Tree"
```

Functional programming

Demo

DEMO 6: ListAndTrees.thy

-Functional programming

Generalizing induction hypothesis

 Induction hypothesis can sometimes be to weak and must be generalized to become useful

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Example – reverse list in linear time:

```
primrec reverse' where
    reverse' [] acc = acc
| reverse' (x # xs) acc = reverse' xs (x # acc)
definition reverse where
    "reverse xs = reverse' xs []
```

-Functional programming

```
The induction hypothesis holds for acc, but we need it for the
  term x # acc.
  lemma "reverse' xs acc = reverse xs @ acc"
  apply(induction xs)
  ...
  using this:
      reverse' xs acc = reverse xs @ acc
  goal (1 subgoal):
      1. reverse' (x \# xs) acc = reverse (x \# xs) @ acc
  . . .
      1. reverse' xs (x \# acc) = (reverse xs @ [x]) @ acc
  . . .
      1. reverse' xs (x \# acc) = reverse xs @ (x \# acc)
Keyword arbitrary:
  lemma "reverse' xs acc = reverse xs @ acc"
      by (induction xs arbitrary: acc) auto
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Functional programming

Demo

DEMO 6: ListAndTrees.thy (cont.)

- Functional programming

General recursion and induction

- Not all recursion patters correspond to primitive recursion over algebraic datatypes
- Isabelle supports general recursion
- Defining general recursive functions requires proving their termination (that can sometimes be done automatically)
 - fun define a general recursive function and prove its termination automatically
 - function define a general recursive function and leave proving its termination to the user
 - It is sometimes possible to define partial functions, that terminate only for some values in their domain

Functional programming

```
fun (sequential) power :: "nat \Rightarrow nat \Rightarrow nat" where

"power x 0 = 1"

| "power x n =

(if n mod 2 = 0 then

power (x * x) (n div 2)

else

x * power x (n - 1))"
```

Functional programming

Demo

DEMO 7: GeneralRecursion.thy

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Functional programming

Axiomatic reasoning

- Two ways to specify axioms
 - axiomatization
 - locale (fixes constants and assumes their properties)
- Locales can be interpreted
 - ensures that axioms are consistent
 - theorems proved abstractly become available for a concrete interpretation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

-Functional programming

Locales

```
locale Geometry =

fixes cong :: "'a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow bool"

assumes cong_refl: "\land x \ y. \ cong \ x \ y \ y \ x"

assumes cong_id: "\land x \ y \ z. \ cong \ x \ y \ z \ z \Longrightarrow x = y"

...

begin

definition ...

lemma ...

end
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

└─ Functional programming

type_synonym point_R2 = "real \times real"

fun dist :: "point_R2 \Rightarrow point_R2" where dist (x₁, y₁) (x₂, y₂) = (x₂ - x₁)² + (y₂ - y₁)²

 $\begin{array}{ll} \mbox{definition cong}_R2:: "point_R2 \Rightarrow point_R2 \Rightarrow \\ point_R2 \Rightarrow point_R2 \Rightarrow bool" \mbox{ where} \\ \mbox{cong}_R2 \times y \ z \ w \longleftrightarrow \ dist \ x \ y = dist \ z \ w \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

interpretation Geometry_R2: Geometry cong_R2 proof

qed

-Functional programming

Demo

DEMO 8: Locales.thy