
Intro to interactive theorem proving in Isabelle/HOL

Intro to interactive theorem proving in
Isabelle/HOL

Filip Marić

*Faculty of Mathematics,
University of Belgrade

PAT 2023

Intro to interactive theorem proving in Isabelle/HOL

Table of contents

1 Introduction

2 Basic syntax and automated provers

3 Natural deduction

4 Isar: a language of structured proofs

5 Functional programming

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Overview

1 Introduction

2 Basic syntax and automated provers

3 Natural deduction

4 Isar: a language of structured proofs

5 Functional programming

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Isabelle/HOL

Isabelle is a generic interactive theorem prover, developed by
Lawrence Paulson (Cambridge) and Tobias Nipkow (Munich).
First released in 1986.

https://isabelle.in.tum.de/

Archive of formal proofs (https://www.isa-afp.org/)

https://www.isa-afp.org/

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Isabelle/HOL

It allows mathematical formulas to be expressed in a formal
language and provides tools for proving those formulas in a
logical calculus.

Integrated tool support for:

Automated provers
Sledgehammer: powerful proof search
Counter-example finding
Code generation
LATEX document generation

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Isabelle/HOL

Isabelle/HOL – Isabelle’s incarnation for Higher-Order Logic

FOL extended with functions and sets, polymorphic types, . . .

ML-style functional programming

“HOL = functional programming + logic”

Intro to interactive theorem proving in Isabelle/HOL

Introduction

A Course at University of Belgrade

Introduction to interactive theorem proving

Elective course on the 4. year of undergraduate studies of
informatics

12 weeks of teaching (weekly 1.5 hours lectures and 1.5 hours
labs)

Students have some background knowledge in logic and
functional programming

Two parts:

Logic and mathematics
Functional programming and verification

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Approach

Recapitulation of many concept that students have informally
used, but through the lens of interactive theorem proving

Students need to understand precise, rigorous communication
and reasoning (both in abstract mathematics, and in
computer programming)

Slow pace

Proof assistant is a tool, and not the aim

Students need not become experts in using some concrete
proof assistant

Concepts are introduced only when necessary, usually through
examples

Using automation is welcome (except in the beginning, when
the concept of proof is introduced)

Intro to interactive theorem proving in Isabelle/HOL

Introduction

This summer school

We have 4 hours total

The main aim is to give a brief introduction to Isabelle/HOL
to those who did not have any experience with it

The other aim is to offer a slightly different didactic to proof
assistants than the usual one

How to teach proof assistants to support better understaning
and provide rigour to elementary high-school/undergraduate
mathematics and computer science?
As close to every day mathematics as possible (focus only on
the concepts that students do in elementary mathematics)
Focus is not on what proof assistants can do and how are they
professionally used, but on how to use them “without tears” as
a supplement to introductory math/cs curriculum

Many exercises that we can do together

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Introductory example

The course starts with an advertisement of interactive
theorem proving

A brief history
Major successes

Instead of the standard “bottom-up” approach where we
strictly define notions before using them, we use a “hands-on”
approach where we try to give intuition and formally define
notions along the way, only when necessary.

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Example: absolute value

What is an Isabelle/HOL theory?

We define some mathematical concept.

We state some of its properties (in form of lemmas).

We prove those lemmas:

using automated theorem provers or
we write the proof in some language and the system checks
that proof.

We start with a very simple example of absolute value
function.

We formalize the beginning of
https://en.wikipedia.org/wiki/Absolute_value

https://en.wikipedia.org/wiki/Absolute_value

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Definition:

|x | =

{
x , if x ≥ 0,

−x , if x < 0.

Properties:
|a| ≥ 0 Non-negativity
|a| = 0⇐⇒ a = 0 Positive-definiteness
|ab| = |a| · |b| Multiplicativity
|a + b| ≤ |a|+ |b| Subadditivity, specifically the triangle inequality

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Wikipedia proof

“Non-negativity, positive definiteness, and multiplicativity are
readily apparent from the definition.
To see that subadditivity holds, first note that |a + b| = s(a + b)
where s = ±1, with its sign chosen to make the result positive.
Now, since −1 · x ≤ |x | and +1 · x ≤ |x |, it follows that, whichever
of ±1 is the value of s, one has s · x ≤ |x | for all real x .
Consequently, |a + b| = s · (a + b) = s · a + s · b ≤ |a|+ |b|, as
desired.”

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Demo

DEMO 1: AbsoluteValue.thy

Intro to interactive theorem proving in Isabelle/HOL

Introduction

Main takeaways

Isabelle definitions are very similar to functional programming

Powerful automation

Declarative proof language makes proofs very similar to
everyday mathematical proofs

Details of syntax are going to be given throughout the course

Intro to interactive theorem proving in Isabelle/HOL

Basic syntax and automated provers

Overview

1 Introduction

2 Basic syntax and automated provers

3 Natural deduction

4 Isar: a language of structured proofs

5 Functional programming

Intro to interactive theorem proving in Isabelle/HOL

Basic syntax and automated provers

Syntax

Students must be comfortable in translating natural language
formulations into formal statements

Syntax of the proof assistant
Typing symbols
Writing logically correct formulae (much deeper skill)

First lab exercises require to write given statements and prove
them using automation (by auto).

Intro to interactive theorem proving in Isabelle/HOL

Basic syntax and automated provers

Examples

1 If everyone who lies also steals, and there is someone who lies,
then there is somene who steals.

2 If no homework is fun, and some reading is homework, then
some reading is not fun.

3 If there is a shoe that fits every leg, then for every leg there is
a shoe that fits it. Does the opposite hold?

4 In one village knights always tell the truth, and knaves always
lie. Visitor asks the person A if he is a knight, but did not
understand his answer. Person B explains that A said that he
is a knave, but then C tells that B lies. Prove that C must be
a knight.

5 If everyone loves a lover and John loves Mary, then does Iago
love Othello?

Intro to interactive theorem proving in Isabelle/HOL

Basic syntax and automated provers

1 Let f be a binary operation that is associative, has a
left-identity element, and all elements have a left inverse.
Show that left inverse is always also the right inverse.

2 Is every symmetric and transitive relation also reflexive? Is
there some additional condition that guarantees it?

Intro to interactive theorem proving in Isabelle/HOL

Basic syntax and automated provers

Assume that Pinocchio always lies and says: “All my hats are
green”. Which of the following must be true.

1 Pinocchio has no green hats.

2 Pinocchio has only one green hat.

3 Pinocchio has no hats.

4 Pinocchio has at least one hat.

5 Pinocchio has at least one green hat.

Intro to interactive theorem proving in Isabelle/HOL

Basic syntax and automated provers

Demo

DEMO 2: BasicSyntax.thy

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Overview

1 Introduction

2 Basic syntax and automated provers

3 Natural deduction

4 Isar: a language of structured proofs

5 Functional programming

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Natural deduction

Two styles of proof in Isabelle/HOL:

Tactics (apply style proofs)
Isar (readable, structured proofs)

Although readable proofs are desirable (easier to read, write
and maintain), under the hood everything boils down to
applying natural deduction rules

Natural deduction is like an assembly language of interactive
theorem proving

It is good if the students have some understanding of what is
happening “under the hood”

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Rules for propositional logic

Conjunction

A B ∧I
A ∧ B

A ∧ B ∧E1
A

A ∧ B ∧E2
B

Disjunction

A ∨I1
A ∨ B

B ∨I2
A ∨ B

A ∨ B

[A]1

...
C

[B]2

...
C ∨E 1,2

C

Negation

[A]1

...
⊥ ¬I 1¬A

A ¬A ¬E⊥

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Rules for propositional logic

Implication

[A]1

...
B ⇒ I 1

A⇒ B

A A⇒ B ⇒ E
B

Logic constants

⊥ ⊥E
A

>I>

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Natural deduction i Isabelle - rules

notI : (P =⇒ False) =⇒ ¬P
notE : J¬P;PK =⇒ R

conjI : JP;QK =⇒ P ∧ Q

conjunct1 : P ∧ Q =⇒ P

conjunct2 : P ∧ Q =⇒ Q

conjE : JP ∧ Q; JP;QK =⇒ RK =⇒ R

disjI1 : P =⇒ P ∨ Q

disjI2 : Q =⇒ P ∨ Q

disjE : JP ∨ Q;P =⇒ R;Q =⇒ RK =⇒ R

impI : (P =⇒ Q) =⇒ P −→ Q

impE : JP −→ Q;P;Q =⇒ RK =⇒ R

mp : JP −→ Q;PK =⇒ Q

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Applying rules

Introduction rules apply (rule <rule_name>).

Elimination rules apply (erule <rule_name>).

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Example proof

lemma "~(A | B) --> ~A & ~B"

apply (rule impI)

apply (rule conjI)

apply (rule notI)

apply (erule notE)

apply (rule disjI1)

apply assumption

apply (rule notI)

apply (erule notE)

apply (rule disjI2)

apply assumption

done

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Demo

DEMO 3: NaturalDeduction.thy

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Rules for first order logic

allI :
∧

x . P x =⇒ ∀x . P x

allE : J∀x . P x ; P ?x =⇒ RK =⇒ R

exI : P ?x =⇒ ∃x . P x

exE : J∃x . P x ;
∧

x . P x =⇒ QK =⇒ Q

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Demo

DEMO 3: NaturalDeduction.thy (cont.)

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Rules for classical logic

ccontr : (¬P =⇒ False) =⇒ P

classical : (¬P =⇒ P) =⇒ P

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Demo

DEMO 2: NaturalDeduction.thy (cont.)

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Natural deduction rules for sets

UnI1 : c ∈ A =⇒ c ∈ A ∪ B

UnI2 : c ∈ B =⇒ c ∈ A ∪ B

UnE : Jc ∈ A ∪ B; c ∈ A =⇒ P; c ∈ B =⇒ PK =⇒ P

IntI : Jc ∈ A; c ∈ BK =⇒ c ∈ A ∩ B

IntE : Jc ∈ A ∩ B; Jc ∈ A; c ∈ BK =⇒ PK =⇒ P

subsetI : (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

subsetD : JA ⊆ B; c ∈ AK =⇒ c ∈ B

ComplI : (c ∈ A =⇒ False) =⇒ c ∈ −A
ComplD : c ∈ −A =⇒ c /∈ A

Intro to interactive theorem proving in Isabelle/HOL

Natural deduction

Demo

DEMO 3: NaturalDeduction.thy (cont.)

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Overview

1 Introduction

2 Basic syntax and automated provers

3 Natural deduction

4 Isar: a language of structured proofs

5 Functional programming

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Isar

Imitate “pen-and-paper” proofs as much as possible

All proofs must be understandable by reading their text,
without running the prover

Combine with powerful automation

Proofs should provide justification
Proofs should provide explanation
Make a balance – write readable proofs and automate trivial
parts

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

How to teach Isar?

Language Isar allows to express the same proof in many
different ways

Two main styles:

backward proofs (from the goal towards assumptions)
forward proofs (from the assumptions towards goals)

Some patterns can be recognized in many proofs

Introduce the proof language through carefully chosen
examples that show different techniques an patterns

In their previous courses student did not prove formulae of
pure logic, but they have experience in proving facts about
sets, relations, and functions

Use those domains to introduce Isar

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

A set example

Prove (A ∪ B)c = Ac ∩ Bc .

Top-level proof structure:

lemma ”−(A ∪ B) = −A ∩ −B”
proof

show ”−(A ∪ B) ⊆ −A ∩ −B”
sorry

show ”−A ∩ −B ⊆ −(A ∪ B)”
sorry

qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Backward proof

Proof is either applcation of an automatic proof method by ...

or consists of a proof...qed block
The keyword proof can be followed by a proof method that
transforms the goal
If method is not specified the system chooses a method based on
the structure of the current goal
In this example the method rule equalityI is chosen

equalityI : JA ⊆ B;B ⊆ AK =⇒ A = B

The proof state becomes:
proof (state)
goal (2 subgoals):

1. −(A ∪ B) ⊆ −A ∩ −B
2. −A ∩ −B ⊆ −(A ∪ B)

The proof continues by explicitly stating and proving each goal

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Each subgoal can be proved by using a backward proof

lemma ”−(A ∪ B) = −A ∩ −B”
proof

show ”−(A ∪ B) ⊆ −A ∩ −B”
proof

fix x
assume ”x ∈ −(A ∪ B)”
show ”x ∈ −A ∩ −B”

sorry
qed

next
show ”−A ∩ −B ⊆ −(A ∪ B)”
proof

fix x
assume ”x ∈ −A ∩ −B”
show ”x ∈ −(A ∪ B)”

sorry
qed

qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

In both subgoals the proof keywords triggers the rule

subsetI method.

subsetI : (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

The first subgoal becomes:∧
x . x ∈ −(A ∪ B) =⇒ x ∈ −A ∩ −B

In Isar this becomes fix ... assume ... show ...

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Forward proof

Let us focus on the first subgoal

At this point we have both an assumption that we can use
(x ∈ −(A ∪ B)), and the goal that should be proved
(x ∈ −A ∩ −B)

From the assumption we can deduce some new facts

We can state them using the keyword have:

fix x
assume ”x ∈ −(A ∪ B)”
have ”x /∈ A ∪ B”

...
show ”x ∈ −A ∩ −B”

sorry

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Proof context

If not stated otherwise, in each (sub)goal the prover ”sees”
only the formula that should be proved

In order to use avaialble assumptions they must be brought in
the proof context

There are various (equivalent) ways to do that (e.g., from,
using, ...)

fix x fix x
assume ”x ∈ −(A ∪ B)” assume ”x ∈ −(A ∪ B)”
from ‘x ∈ −(A ∪ B)‘ have ”x /∈ A ∪ B”
have ”x /∈ A ∪ B” using ‘x ∈ −(A ∪ B)‘

by (rule complD) by (rule complD)
show ”x ∈ −A ∩ −B” show ”x ∈ −A ∩ −B”

sorry sorry

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Abbreviations

Many abbreviations (some are deprecated)
this the last statement
then from this
hence then have
thus then show
with ... from this and ...

fix x
assume ”x ∈ −(A ∪ B)”
then have ”x /∈ A ∪ B”

by (rule complD)
show ”x ∈ −A ∩ −B”

sorry

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Demo

DEMO 4: Isar.thy

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Reasoning by cases

Let us focus on the second subgoal

show ”−A ∩ −B ⊆ −(A ∪ B)”
proof

fix x
assume ”x ∈ −A ∩ −B”
then have ”x /∈ A” ”x /∈ B”

by auto
show ”x ∈ −(A ∪ B)”
proof

assume ”x ∈ A ∪ B”
show False

sorry
qed

qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Reasoning by cases (disjunction elimination)

Currently we have that x /∈ A, x /∈ B, and x ∈ A ∪ B, and we
need to derive a contradiction.

It easily follows by considering cases x ∈ A and x ∈ B that
follow from x ∈ A ∪ B.

If we bring a disjunctive fact such as x ∈ A ∪ B as the first
fact into the proof context, the proof applies reasoning by
cases (elimination rules such as UnE, disjE, ...).

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

...
assume ”x ∈ A ∪ B”
then show False
proof

assume x ∈ A”
with ‘x /∈ A‘ show False

by - (erule notE)
next

assume x ∈ B”
with ‘x /∈ B‘ show False

by - (erule notE)
qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Demo

DEMO 4: Isar.thy (cont.)

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Introducing universal quantifiers

Prove that every symmetric transitve relation, with no isolated
elements is reflexive.

Since the goal starts with the universal quantifier, proof
automatically chooses the allI rule – prove the statement for
an arbitrary element x .

lemma
assumes ”∀x . ∃y . R x y”

sym: ”∀x y . R x y −→ R y x”
trans: ”∀x y . R x y −→ R y x”

shows ”∀x . R x x”
proof

fix x
show ”R x x”

sorry
qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Eliminating existential quantifiers

We can always name an element for which we know it exists
using the keyword obtain

lemma
assumes ”∀x . ∃y . R x y”

sym: ”∀x y . R x y −→ R y x”
trans: ”∀x y . R x y −→ R y x”

shows ”∀x . R x x”
proof

fix x
from assms(1) obtain y where ”R x y”

by auto
with sym have ”R y x”

by auto
from ”R x y” ”R y x” show ”R x x”

using trans
by auto

qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Proof by contradiction (rule ccontr)

Prove the “drinkers paradox”:
∃d . drinks d −→ (∀x . drinks x).

lemma ”∃d . drinks d −→ (∀x . drinks x)”
proof (rule ccontr)

assume ”¬ ?thesis”
then have ”∀d .¬(drinks d −→ (∀x . drinks x))”

by auto
then have ”∀d .drinks d ∧ ¬(∀x . drinks x)”

by auto
then have ”(∀d .drinks d) ∧ ¬(∀x . drinks x)”

by auto
show False

by auto
qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Proof by cases (cases)

Alternative proof considers cases when everybody drinks and
when there is someone who does not drink.

lemma ”∃d . drinks d −→ (∀x . drinks x)”
proof (cases ”∀x . drinks x”)

case True
then show ?thesis

by auto
next

case False
then obtain d where ”¬ drinks d”

by auto
then have ”drinks d −→ (∀x . drinks x)”

by auto
then show ?thesis

by auto
qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Exercises

Let us do some exercises about functions

Library predicates inj, surj, bij hold for injective,
surjective, and bijective functions

f ◦ g denotes the function composition

f ‘ A denotes the image of the set A under the function f

f − ‘ A denotes the inverse image the set A under the
function f

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Moreover-ultimately

Often the final statement follows from several intermediate
statements

A special moreover...ultimately syntax can abbreviate
such proofs so that there is no need to explicitly recall
intermediate statements and insert them into the proof
context of the final statement

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Moreover-ultimately

lemma
assumes ”surj f ” ”surj g”
shows ”surj (f ◦ g)”
unfolding surj def

proof
fix y
obtain z where ”f z = y”

using ‘surj f ‘ unfolding surj def by metis
moreover
obtain x where ”g x = z”

using ‘surj g ‘ unfolding surj def by metis
ultimately
show ”∃x . y = (f ◦ g)x”

unfolding comp def by auto
qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Demo

DEMO 4: Isar.thy (cont.)

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Numbers

Several number types (nat, int, rational, real, complex)

Choosing appropriate number type is sometimes essential

Be careful to specify number type, since Isabelle often cannot
automatically deduce exact number type

You can apply all field laws on rational, real and complex
numbers

You can apply usual subtraction laws on integers, but not on
naturals

Proving inequalities is usually much harder then proving
equalities

Proving rational expressions is usually harder than proving
polynomials

. . .

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Field simps

Many equational theorems about rational and real numbers
can be proved by using simplifier with algebra simps and
field simps collections of theorems

lemma
fixes x y :: real
shows ”(x + y)2 = x2 + 2 ∗ x ∗ y + y 2”
by (simp add: power2 eq square algebra simps)

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Equational reasoning (also-finally)

In classical mathematics we usually reason by writing chains
of equalities (or consistently oriented inequalities, mixed with
equalities)

This reasoning is implicitly based on transitivity of =, ≤, ≥
Isabelle has special syntax also...finally for this type of
reasoning

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Equational reasoning (also-finally)

lemma
fixes x y :: real
shows ”(x + y)2 = x2 + 2 ∗ x ∗ y + y 2”

proof-
have ”(x + y)2 = (x + y) ∗ (x + y)”

sorry
also have ”. . . = x ∗ (x + y) + y ∗ (x + y)”

sorry
...
also have ”. . . = x2 + 2 ∗ x ∗ y + y 2”

sorry
finally show ?thesis
.

qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

method subst ... makes a substitution of an eqation
(rewrite rule) within the current goal

method subst (asm) ... makes substitution of an eqation
(rewrite rule) within the current assumptions

Some basic theorems that can be used as rewrite rules:

add.assoc: (x + y) + z = x + (y + z)
add.commute: x + y = y + x
mult.assoc: (x ∗ y) ∗ z = x ∗ (y ∗ z)
mult.commute: x ∗ y = y ∗ x
distrib left: (x + y) ∗ z = x ∗ z + y ∗ z
distrib right: z ∗ (x + y) = z ∗ x + z ∗ y

theorems can be instantiated

add.assoc[of 1 2] gives (1 + 2) + z = 1 + (2 + z)
add.assoc[where x=1 and y=2]

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Demo

DEMO 5: Numbers.thy

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Induction over natural numbers

Induction is the fundamental property of naturals

Special syntactic support for induction proofs

lemma
n :: nat
shows ”(

∑
x ∈ {0.. < n + 1}) = n ∗ (n + 1) div 2”

proof (induction n)
case 0
show ?case by simp

next
case (Suc n)
then show ?case by simp

qed

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Demo

DEMO 5: Numbers.thy (cont.)

Intro to interactive theorem proving in Isabelle/HOL

Isar: a language of structured proofs

Defining natural numbers

Natural numbers can be defined as an algebraic datatype

datatype nat = Zero | Suc nat

Functions can then be defined using primitive recursion

primrec add :: ”nat ⇒ nat” where
”add x Zero = x”

| ”add x (Suc y) = Suc (add x y)

Proofs can use induction over the algebraic datatype

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Overview

1 Introduction

2 Basic syntax and automated provers

3 Natural deduction

4 Isar: a language of structured proofs

5 Functional programming

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Datastructures

Algebraic datatypes and primitive recursion can used to define
classic programming datastructures (lists, trees, . . .)

datatype ’a List =
Empty

| Cons ’a ”’a List”

datatype ’a Tree =
Nil

| Node ’a ”’a Tree” ”’a Tree”

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Demo

DEMO 6: ListAndTrees.thy

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Generalizing induction hypothesis

Induction hypothesis can sometimes be to weak and must be
generalized to become useful

Example – reverse list in linear time:

primrec reverse’ where
reverse’ [] acc = acc

| reverse’ (x # xs) acc = reverse’ xs (x # acc)
definition reverse where

”reverse xs = reverse’ xs []

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

The induction hypothesis holds for acc, but we need it for the
term x # acc.

lemma ”reverse’ xs acc = reverse xs @ acc”
apply(induction xs)
...
using this:

reverse’ xs acc = reverse xs @ acc
goal (1 subgoal):

1. reverse’ (x # xs) acc = reverse (x # xs) @ acc
...

1. reverse’ xs (x # acc) = (reverse xs @ [x]) @ acc
...

1. reverse’ xs (x # acc) = reverse xs @ (x # acc)

Keyword arbitrary:

lemma ”reverse’ xs acc = reverse xs @ acc”
by (induction xs arbitrary: acc) auto

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Demo

DEMO 6: ListAndTrees.thy (cont.)

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

General recursion and induction

Not all recursion patters correspond to primitive recursion
over algebraic datatypes

Isabelle supports general recursion

Defining general recursive functions requires proving their
termination (that can sometimes be done automatically)

fun define a general recursive function and prove its
termination automatically
function define a general recursive function and leave proving
its termination to the user
It is sometimes possible to define partial functions, that
terminate only for some values in their domain

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

fun (sequential) power :: ”nat ⇒ nat ⇒ nat” where
”power x 0 = 1”

| ”power x n =
(if n mod 2 = 0 then

power (x * x) (n div 2)
else

x * power x (n - 1))”

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Demo

DEMO 7: GeneralRecursion.thy

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Axiomatic reasoning

Two ways to specify axioms

axiomatization

locale (fixes constants and assumes their properties)

Locales can be interpreted

ensures that axioms are consistent
theorems proved abstractly become available for a concrete
interpretation

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Locales

locale Geometry =
fixes cong :: ”’a ⇒ ’a ⇒ ’a ⇒ ’a ⇒ bool”
assumes cong refl: ”

∧
x y . cong x y y x”

assumes cong id: ”
∧

x y z . cong x y z z =⇒ x = y”
. . .
begin

definition . . .
lemma . . .

end

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

type synonym point R2 = ”real × real”

fun dist :: ”point R2 ⇒ point R2” where
dist (x1, y1) (x2, y2) = (x2 − x1)2 + (y2 − y1)2

definition cong R2 :: ”point R2 ⇒ point R2 ⇒
point R2 ⇒ point R2 ⇒ bool” where

cong R2 x y z w ←→ dist x y = dist z w

interpretation Geometry R2: Geometry cong R2
proof

. . .
qed

Intro to interactive theorem proving in Isabelle/HOL

Functional programming

Demo

DEMO 8: Locales.thy

	Introduction
	Basic syntax and automated provers
	Natural deduction
	Isar: a language of structured proofs
	Functional programming

