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What you will learn in this course:

1 Better understand what a proof is, carry out proofs more carefully.

2 Discover the field of formal proofs.

3 Practical aspects: using Coq.

4 More theoretical aspects : the Curry-Howard isomorphism, . . .
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What is a proof ?

something convincing,

a sequence of deductions from the axioms,

an algorithm (Curry-Howard isomorphism)
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Yes but. . .

It may be difficult to be sure that a proof is actually correct:

the number of statements involved

the occurence of computations

too many technical details, too many subcases

the size of the proof
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Verifying that a proof is correct
When computations occur

Four color theorem

No more than four colors are required to color the regions of any map so
that no two adjacent regions have the same color.

1976 Appel and Hake (1478 configurations, 1200 hours of
computations)

2004 Formalized in Coq by Gonthier and Werner
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Verifying that a proof is correct
When computations occur

Kepler conjecture/Hales theorem

For a packing of equally-sized spheres, the maximum
density is obtained by a face-centered cubic arrangement.

1998 Mathematical proof by Thomas Hales

2004 - 2014 Projet Flyspeck: formalizing the theorem
using HOL-light with contributions in Coq
and Isabelle (more than 300 000 lines) Photo by Robert

Cudmore

Robert MacPherson, editor, wrote:
“The news from the referees is bad, from my perspective. They have not been able
to certify the correctness of the proof, and will not be able to certify it in the future,
because they have run out of energy to devote to the problem. This is not what I
had hoped for. The referees put a level of energy into this that is, in my experience,
unprecedented. ”
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Verifying that a proof is correct
The proof size

Théorème de Feit-Thompson

Theorem Feit_Thompson (gT:finGroupType) (G:{group gT}):

odd ##|G| -> solvable G.

Proof in Coq by Georges Gonthier et al. (september 2012)a:
170 000 lines, 15 000 definitions, 4 200 theorems

ahttps://mathlesstraveled.com/2012/11/11/

a-computer-checked-proof-of-the-odd-order-theorem/
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Verifying that a proof is correct
Some success stories

CompCert: a C compiler proved correct in Coq (Xavier Leroy et. al.)

seL4: a micro kernel proved correct in Isabelle (Gerwin Klein et. al.)

A payment system (Gemalto, Andronick et. al.)

The automation of some underground lines (e.g. line 14 in Paris)

A hash function (SHA 256, Andrew Appel, 2015)

A crypotographic protocol (OpenSSL HMAC, Andrew Appel et. al.,
2015)
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Improving the quality of proofs

1 Make the hypotheses clearer
(as precise as possible, not too restrictive)

2 Make it clear what a good proof actually is

3 Be as precise as possible so that we do not need to understand the
proof to check it.

4 Automate some parts of the proofs
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The Coq Proof Assistant

What is Coq ?

A Proof Assistant, developped and distributed by INRIA

Try it easily ! https://coq.vercel.app/

Install with opam: https://coq.inria.fr/opam-using.html

It allows :

to define mathematical notions/programs,

and to prove some properties of these objects.
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ACM Software System Award
2015 GCC

2014 Mach

2013 Coq

2012 LLVM

2011 Eclipse

2010 GroupLensCFRS

2009 VMware

2008 Gamma Parallel Database System

2007 Statemate

2006 Eiffel

2005 The Boyer-Moore Theorem Prover

2004 Secure Network Programming

2003 Make

2002 Java

. . .

1991 TCP-IP
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Why do we (Need to) Formalize Mathematical Results?

The Example of the Finite Projective Space PG(3,3)
I Projective Incidence Geometry only features points and lines, together

with an incidence relation (∈).
I Projective Incidence Geometry can be captured by a set of axioms.
I PG(3,3) is a finite projective space with 35 points and 130 lines.

It is a model of Projective Incidence Geometry.
I Each line contains exactly 4 points.
I Lines are easily represented as sets of points, as Alan R. Prince did in a

journal article.1

I The specification is actually wrong
(this is a minor error, but still an error).

1Projective planes of order 12 and PG(3,3). Discrete Mathematics,
208-209 :477-483, 1999.
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PG(3,3) - description of the incidence relation
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PG(3,3) - description of the incidence relation

30

18 27
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Proof Process in Coq

Developing a proof in Coq is achieved in two successive steps:

first a proof is interactively built by the user ;

then the proof is automatically checked by the system.

The user does the proof work,
the system simply checks that the proof is actually correct.
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Useful Ressources

Coq web site:
I Download:

http://coq.inria.fr/

I Coq reference manual:

http://coq.inria.fr/doc/

Books and Exercices :
I Coq’Art by Y. Bertot and P. Castéran

(available in French, English and Chinese)

http://www.labri.fr/perso/casteran/CoqArt/

I Software Foundations par Benjamin C. Pierce, Chris Casinghino,
Michael Greenberg,Vilhelm Sjöberg, Brent Yorgey

http://www.cis.upenn.edu/~bcpierce/sf/
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Syntax

Logic Coq

⊥ False

> True

a = b a = b

a 6= b a <> b

¬A ~ A

A ∨ B A \/ B

A ∧ B A /\ B

A⇒ B A -> B

A⇔ B A <-> B

f (x , y , z) (f x y z)

∀xy ,P(x , y) forall (x y:A), P x y

∃xy ,P(x , y) exists (x:A) (y:B), P x y
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Sequent

Formal deduction systems, used to modelize logics, often rely on a
language based on sequents. It is a couple (Γ,F ) with:

a multi-set of formula Γ (the order is not relevant, some elements
may be repeated) and

a formula F .

This couple is usually denoted by

Γ ` F

Intuitively, a sequent represents the fact that from the hypotheses of Γ,
one can deduce F .
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Interaction with Coq

In Coq, instead of writing {A1,A2, . . . ,An} ` P, we write:

H_1 : A_1

H_2 : A_2

H_n : A_n

___________________________________ (1/1)

P
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Natural Deduction

We use sequents.

We only handle hypotheses.
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Rules for Minimal Logic

if A ∈ Γ
Γ ` A

Γ,A ` B
Intro →

Γ ` A→ B
Γ ` A→ B Γ ` A

Elim →
Γ ` B
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Proof of the formula K

A,B ` A
Intro →

A ` B → A
Intro →` A→ B → A
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Proof of the formula S

A→ B → C ,A→ B,A ` A→ B → C A→ B → C ,A→ B,A ` A
MP

A→ B → C ,A→ B,A ` B → C ... X ...
MP

A→ B → C ,A→ B,A ` C
Intro →

A→ B → C ,A→ B ` A→ C
Intro →

A→ B → C ` (A→ B)→ A→ C
Intro →` (A→ B → C)→ (A→ B)→ A→ C

X:

A→ B → C ,A→ B,A ` A→ B A→ B → C ,A→ B,A ` A
MP

A→ B → C ,A→ B,A ` B
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Rules for ∧ (and)

Γ ` P Γ ` Q
Intro ∧

Γ ` P ∧ Q

Γ ` P ∧ Q
Elim ∧l

Γ ` P

Γ ` P ∧ Q
Elim ∧r

Γ ` Q
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Rules for ∨ (or)

Γ ` P
Intro ∨l

Γ ` P ∨ Q

Γ ` Q
Intro ∨r

Γ ` P ∨ Q

Γ ` P ∨ Q Γ,P ` R Γ,Q ` R
Elim ∨

Γ ` R
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Rule for ¬ (not)

Γ,A ` ⊥
Intro ¬

Γ ` ¬A

Γ ` ¬A Γ ` A
Elim ¬

Γ ` ⊥

Note

We can also write ¬A as A→ ⊥.
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Rule for ⊥ (bottom)

Γ ` ⊥
Elim ⊥

Γ ` P
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Rules for ∀ (forall)

Γ ` A ∀ intro (x is not free in Γ)
Γ ` ∀x A

Γ ` ∀x A ∀ elim
Γ ` A[x ← t]
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Rules of ∃ (exist)

Γ ` A[x ← t]
∃ intro

Γ ` ∃x A

Γ ` ∃x A(x) Γ,A(x) ` B
∃ elim (x is not free neither in Γ nor in B)

Γ ` B
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Names

Note

Rules are named after their behavior when read from top to bottom.
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Summary (cheat sheet)
Γ,A ` B

Intro →
Γ ` A→ B

Γ ` P
Intro ∨l

Γ ` P ∨ Q

Γ ` P Γ ` Q
Intro ∧

Γ ` P ∧ Q

Γ,A ` ⊥
Intro ¬

Γ ` ¬A

Γ ` A→ B Γ ` A
Elim →

Γ ` B

Γ ` Q
Intro ∨r

Γ ` P ∨ Q

Γ ` P ∧ Q
Elim ∧l

Γ ` P

Γ ` ¬A Γ ` A
Elim ¬

Γ ` ⊥

if A ∈ Γ
Γ ` A

Γ ` P ∨ Q Γ,P ` R Γ,Q ` R
Elim ∨

Γ ` R

Γ ` P ∧ Q
Elim ∧r

Γ ` Q

Γ ` ⊥
Elim ⊥

Γ ` P

Γ ` ∃x A(x) Γ,A(x) ` B ∃elim
x 6∈ FV (Γ) ∪ FV (B)Γ ` B

Γ ` A ∀ intro (x 6∈ FV (Γ))
Γ ` ∀x A

Γ ` A[x ← t]
∃ intro

Γ ` ∃x A

Γ ` ∀x A ∀ elim
Γ ` A[x ← t]
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Coq Tactics for Natural Deduction

Provided an inference rule R with n premisses of the shape:

Γ1 ` P1 . . . Γn ` Pn
R

Γ ` G

Applying the corresponding Coq tactic transforms the current goal:

Γ ` G

into n new subgoals:
Γ1 ` P1

. . .

Γn ` Pn
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Axiom Rule

if A ∈ Γ
Γ ` A

X : A

============

A

Proof completed.

assumption. or apply X.
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Intro Rule for →
Γ,A ` B

Intro →
Γ ` A→ B

....

=====================

A -> B

X : A

=====================

B

intro X. or intros. to introduce several hypotheses.
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Elimination Rule for →
Γ ` A→ B Γ ` A

Elim →
Γ ` B

....

=====================

B

=====================

A -> B

=====================

A

cut A.
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An Alternative Eliminate Rule for →
Γ ` A Γ,A ` B

Γ ` B

....

=====================

B

...

=====================

A

...

A

=====================

B

assert (A).
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Another Alternative for Elim →
Γ,H : A→ B ` A

Γ,H : A→ B ` B

H: A -> B

=====================

B

H: A -> B

=====================

A

apply H.
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Another Alternative for Elim →
Γ,H : H1 → H2 → B ` A

Γ,H : A→ B ` B

H: H1 -> H2 -> B

=====================

B

H: H1 -> H2 -> B

=====================

H1

H: H1 -> H2 -> B

=====================

H2

apply H.
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Introduction Rule for ∧
Γ ` A Γ ` B

Intro ∧
Γ ` A ∧ B

....

=====================

A /\ B

=====================

A

=====================

B

split.
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Elimination Rule for ∧ l

Γ ` A ∧ B
Elim ∧l

Γ ` A

....

=====================

A

=====================

A /\ B

assert (T: A /\ B);[idtac|elim T;intros;assumption].
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Introduction Rule for ∨ r

Γ ` B
Intro ∨r

Γ ` A ∨ B

....

=====================

A \/ B

=====================

B

right.
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Introduction Rule for ∨ l

Γ ` A
Intro ∨l

Γ ` A ∨ B

....

=====================

A \/ B

=====================

A

left.
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Elimination Rule for ∨
Γ ` A ∨ B Γ,A ` G Γ,B ` G

Elim ∨
Γ ` G

Γ,H : A ∨ B,A ` G Γ,H : A ∨ B,B ` G

Γ,H : A ∨ B ` G

....

H : A \/ B

=====================

G

H : A \/ B

H0 : A

=====================

G

H : A \/ B

H0 : B

=====================

G

elim H;intro. or destruct H. or decompose [or] H.
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An Alternative Elimation Rule for ∧
Γ,H : A ∧ B,H0 : A,H1 : B ` G

Γ,H : A ∧ B ` G

....

H : A /\ B

=====================

G

H : A /\ B

H0 : A

H1 : B

=====================

G

elim H;intro. or destruct H. or decompose [and] H.
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Elimination Rule for ⊥
Γ ` ⊥

Elim ⊥
Γ ` P

....

=====================

P

....

=====================

False

exfalso.
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Elimination Rule for ⊥
Ax

Γ,H : ⊥ ` ⊥
Elim ⊥

Γ,H : ⊥ ` P

....

H : False

=====================

P

Proof completed.

elim H.
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Introduction Rule for ¬
Γ,A ` ⊥

Intro ¬
Γ ` ¬A

....

=====================

~ A

H : A

=====================

False

intro.
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Elimination Rule for ⊥
Γ ` ¬A Γ ` A

Elim ¬
Γ ` ⊥

Elim ⊥
Γ ` G

....

=====================

G

...

=====================

A

...

=====================

~ A

absurd A.
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Some Coq tactics (to remember)

intro (introduces hypotheses in the context)

assert (assumes a statement holds)

apply (applies a theorem)

exists (provides a witness for a ’exists’)

decompose [ex] H

(provides witnesses for all ’exists’ in the hypothesis H)

decompose [and] H (splits all ’and’ of H)

decompose [or] H (carries out case reasoning on all ’or’ of H)

unfold t (unfolds the definition of t)

simpl

reflexivity, symmetry, transitivity

rewrite, replace ... with
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Exercises (exercises logic.v)

l0: ∀A B C : Prop, ((A→ B) ∧ (B → C ))→ (A→ C )

l1: ∀A B : Prop,A ∨ B → B ∨ A

l2: ∀A B C : Prop, ((A ∧ B)→ C )→ A→ B → C

l3: ∀A B C : Prop, (A→ B → C )→ (A ∧ B)→ C

l4: ∀A B C : Prop, (A ∧ (B ∨ C ))→ ((A ∧ B) ∨ (A ∧ C ))

l5: ∀A B C : Prop, ((A ∧ B) ∨ (A ∧ C ))→ (A ∧ (B ∨ C ))
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Composing tactics

tac0; tac1 applies the tactic tac0 to the current goal, and then the
tactic tac1 to the n subgoals generated by tactic tac0.
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Some notations

Logic Coq

∧ /\

∨ \/

¬ ~

⇒ ->

⇔ <->

∀ forall

∃ exists

Parentheses

The arrow is right-associative: (A→ B → C ) corresponds to
(A→ (B → C )).
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Prop vs bool

Prop is the type of propositions that we prove.
Examples: True, False, 2<3, forall x, x=x,
leb 2 3 = true.

bool is the type of boolean values, which can be used in programs
(in if-then-else constructs).
Examples: true, false, leb 2 3

Compute (leb 2 3).

= true

: bool

Compute (2 <= 3).

= 2 <= 3

: Prop

One may prove that forall b: bool, b=true \/ b=false.
But we do not always consider that forall P, P \/ ~P holds.
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Intuitionist vs Classical Logic

The following formulae are valid in classical logic:

excluded middle P ∨ ¬P
elimination of double negation ¬¬P → P

Pierce’s law ((P → Q)→ P)→ P

These propositions acknowledge that there are some proofs which do not
build an object satisfying the considered statement.
Some mathematicians rejected these propositions:

Brouwer,

Heyting, . . .

A proof is said to be constructive if it does not require the excluded middle
principle.
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Properties of intuitionist logic

Disjunction

From a proof of A ∨ B, we can extract a proof of A or a proof of B.

Witness

From a proof of ∃x ,A(x) we can extract a witness t and a proof of A(t).
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Example of a classic proof

Let us show that:

∃x , y 6∈ Q, xy ∈ Q

Consider
√

2
√

2
.

a If
√

2
√

2 ∈ Q.
We choose x =

√
2 et y =

√
2.

b Otherwise
√

2
√

2 6∈ Q.

We choose x =
√

2
√

2
and y =

√
2.

xy = (
√

2

√
2
)

√
2

=
√

2

√
2×
√

2
=
√

2
2

= 2 ∈ Q
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A theorem in analysis actually states that
√

2
√

2
is irrational and that we

must choose the case “b“ , but the proof relying on the excluded middle
does not tell this.
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Classic propositional logic

We add the rule:

Reductio ad absurdum

Γ,¬P ` ⊥
RAA

Γ ` P

Note

We could have written:

Γ ` ¬¬P
RAA’

Γ ` P
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Double Negation

¬¬A,¬A ` ¬¬A ¬¬A,¬A ` ¬A
elim ¬¬¬A,¬A ` ⊥

RAA¬¬A ` A
intro →` ¬¬A→ A
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Law of Excluded Middle

¬(A ∨ ¬A) ` ¬(A ∨ ¬A)

¬(A ∨ ¬A),A ` A
intro ∨l¬(A ∨ ¬A),A ` A ∨ ¬A ¬(A ∨ ¬A),A ` ¬(A ∨ ¬A)

elim ⊥¬(A ∨ ¬A),A ` ⊥
intro ⊥¬(A ∨ ¬A) ` ¬A

intro ∨r¬(A ∨ ¬A) ` A ∨ ¬A
¬(A ∨ ¬A) ` ⊥

RAA` A ∨ ¬A
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Pierce law

(A → B) → A,¬A ` ¬A

(A → B) → A,¬A ` (A → B) → A

Γ,¬A, A ` A Γ,¬A, A ` ¬A
elim ¬

(A → B) → A,¬A, A ` ⊥
elim ⊥

(A → B) → A,¬A, A ` B
intro →

(A → B) → A,¬A ` A → B
elim →

(A → B) → A,¬A ` A
elim ⊥

(A → B) → A,¬A ` ⊥
RAA

(A → B) → A ` A
Intro →

` ((A → B) → A) → A
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Exercises

Definition EM := (forall A:Prop, A\/~A).

Definition DN := (forall A:Prop, ~~A->A).

Definition contrap := (forall A B:Prop,(~B->~A) -> (A->B)).

Definition Pierce := (forall A B:Prop, ((A->B)->A) -> A).

Definition neg_impl := forall P Q:Prop, (P->Q)->(~P\/Q).

Definition all := [EM; DN; contrap; Pierce; neg_impl].

Lemma all_equiv :

forall x y, In x all -> In y all -> x <-> y.
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Coq is an intuitionist system

By default, Coq works in intuitionist logic.
To use the excluded middle, we must explicit require it by the command:

Require Export Classical.
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Introduction to currying

Prove that the following formula holds:

(A→ (B → C ))↔ (A ∧ B → C )

Note: As → is right-associative, we could have writtten:

(A→ B → C )↔ (A ∧ B → C )
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Currying

Definition

Currying consists in transforming a function with takes several arguments
into a function with a single argument returning a function which takes as
arguments all the remaining arguments.

Note: this operation is named after Haskell Curry (1900-1982).
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Example

In OCaml

Instead of writing:

# let f(x,y) = x + y;;

val f : int * int -> int = <fun>

We write:

# let f x = fun y -> x + y;;

val f : int -> int -> int = <fun>

or

# let f x y = x + y;;

val f : int -> int -> int = <fun>

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 74 / 124



Example

In Coq

We usually curry all functions and statements. We shall rather write

Lemma foo : forall p q : R, p > 0 -> q > 0 -> p*q > 0.

than:

Lemma foo : forall p q : R, p > 0 /\ q > 0 -> p*q > 0.
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Why use currying?

To be able to carry out partial applications more easily.
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Transition: Sorts

A sort is a type for types.
Propositions A, B, etc. are types (those of their proof terms).
These types are of type Prop.
We say that A, B, etc. are of sort Prop.
On the other side, boolean bool, integers nat are types whose type is Set.
Set et Prop are of type Type.

Set : where we compute

Prop : where we reason
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Inductive Datatypes

Coq relies on a formalism called the Calculus of Inductive Constructions.

Main features

Based on type theory

Higher-order logic (functions are first-class citizens)

Data-structures can be represented by Inductive Types

There is no distinction between terms and types:
bool is the type of true and false and bool is also a term of type
Set.
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Inductive Definitions

Inductive definitions consist in:

providing the basic elements,

providing rules to build new elements from the already-known
elements.

Examples

Natural Numbers

Lists, Trees, . . .

Inductive Predicates
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Peano integers (natural numbers)

1 The element zero, denoted by 0 is a natural number.

2 If n is a natural number, then its successor S(n) is a natural number.

Alternative notation: P ::= O | S P
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Coq vs OCaml

Coq

Inductive nat : Set :=

O : nat

| S : nat -> nat.

Caml
type nat =

O

| S of nat
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Recursion/Induction on nat

forall P : nat -> Prop,

P 0 ->

(forall n : nat, P n -> P (S n)) ->

forall n : nat, P n

Universal Quantification on a property P: nat -> Prop

Conclusion : forall n : nat, P n

2 cases:
1 one base case
2 one induction case
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Induction Principle

Applying the induction principle: elim n generates 2 subgoals.

forall n : nat, P n

________________

P 0

n : nat

IHn : P(n)

________________

P(S(n))

In Coq, an induction principle is automatically generated after each
inductive definition.
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Constructors are distinct (free)

To use the specific property, we can use the tactic discrimate.

Lemma true_false : true<>false.

intro H; discriminate.

Qed.

Lemma zero_succ : forall n:nat, ~(S n)=O.

intros n H; discriminate H.

Qed.
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Constructors are injective

To use the specific property, we can use the tactic injection.

Lemma test_injection: forall x y, S x = S y -> x=y.

Proof.

intros.

injection H.

intro.

assumption.

Qed.
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Aparté: equality in Coq

Check eq.

eq : forall A : Type, A -> A -> Prop

Check refl_equal.

refl_equal : forall (A : Type) (x : A), x = x

It is a polymorphic type (A:Type). Thus the equality relation is
generic and its first argument is the type of elements to be compared.

Equality is a reflexive, symmetric and transitive relation. These
properties can be used through the tactics reflexivity, symmetry
and transitivity t.
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Reasoning about equality

Principle of Leibnitz equality

Check eq_ind.

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),

P x -> forall y : A, x = y -> P y

Tactics for equality

rewrite

rewrite in

replace with

replace with in

subst
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Recursive Function: fixpoint definition

Adding natural numbers:

Fixpoint plus (n m : nat) {struct n} : nat :=

match n with

| O => m

| S p => S (plus p m)

end.

Eval compute in (plus O 56).

Eval compute in (plus 12 67).

Eval compute in (plus 67 12).
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Termination

In Coq, functions must always terminate!

The annotation {struct n} tells the system which argument decreases
structurally at each recursive call. Recursive calls are carried out on strict
subterms. This enables to ensure the termination of the function.

Example

Fixpoint bar (n:nat) : nat := bar n.

This definition is rejected by the system and leads to the following error:

Error: Recursive definition of bar is ill-formed.
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Otherwise we get . . .

. . . a contradiction!

Fixpoint foo (b :bool) : bool := negb (foo b).

We have foo true = negb (toto true)

If foo true = false then foo true = true.

If foo false = true then foo false = false.
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Functions are total!

In Coq, all functions must be total!

What to do when we need to non total function?

We can use the option type:

Inductive option (A:Type) : Type :=

| Some : A -> option A

| None : option A.
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The depth of filtering can be more than 1.
This is useful for checking parity or computing Fibonacci:

Fixpoint even (n:nat) : Prop :=

match n with O => True

| (S O) => False

| (S (S p)) => pair p

end.

Eval compute in (even 8789).

Eval compute in (even 8790).
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Example: Fibonacci

Fixpoint fib n {struct n} :=

match n with

O => 1

| S O => 1

| S ((S p) as p1) => fib p + fib p1

end.
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Computing with Functions

Once a fixpoint definition is entered, additional computational rules are
added to the system (one by match branches).

tactics compute, vm compute , simpl are useful to compute in the
current goal.

simpl in H, to compute in a specific hypothesis H.

Example:

Reductions for plus:
plus O m −→ι m

plus (S n) m −→ι S (plus n m)
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Associativity of addition +

Lemma plus_assoc: forall n m p : nat,

(plus (plus n m) p) = (plus n (plus m p))

Proof by induction : intros n m p; elim n.

1 Base case : 0 + (m + p) = 0 + m + p
I simplification; reflexivity of equality.

2 induction case:. . .
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Three Examples of Proofs

proving a statement about natural numbers (by induction)

6 | n3 − n

sum of the n first integers (interactive example)

2 ∗ Σn
i=0 i = n ∗ (n + 1).

making an amount greater than 8 with coins of 3 and 5

∀m : nat,∃i : nat, ∃j : nat, 8 + m = 5 ∗ i + 3 ∗ j .
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Tarski Semantics

Truth Tables

p 0 0 1 1
q 0 1 0 1

p ∧ q 0 0 0 1
p ∨ q 0 1 1 1
p → q 1 1 0 1
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Heyting-Kolmogorov Semantics

Heyting-Kolmogorov semantics consist in providing a functional
interpretation to proofs.

A proof of A→ B is a function which, from a proof of A produces a
proof of B.

A proof of A ∧ B is a couple composed of a proof of A and of a proof
of B.

A proof of A ∨ B is a couple (i , p) with (i = 0 and p a proof of A) or
(i = 1 and p a proof of B).

A proof of ∀x .A is a function which, for each object t builds an object
of type A[x := t].

This interpretation consists in computing with proofs. This is very close to
functional programming and λ-calculus.
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Example

Example from a type point of view:

If H has type A→ B et H ′ has type A
then

H H ′ has B.

Example from a proof point of view:

If H is a proof of A→ B and H ′ is a proof of A
then

H H ′ is a proof of B.
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Curry-Howard Isomorphism I

logic programming

Γ,A ` B
Γ ` A⇒ B

Γ, x : A ` t : B
Γ ` (fun x : A 7→ t) : A→ B

Γ ` A⇒ B Γ ` A
Γ ` B

Γ ` f : A→ B Γ ` a : A
Γ ` f (a) : B
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Curry-Howard Isomorphism II

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` a : A Γ ` b : B
Γ ` (a, b) : A× B

Γ ` A ∧ B
Γ ` A

Γ ` t : A× B
Γ ` fst t : A

Γ ` A ∧ B
Γ ` B

Γ ` t : A× B
Γ ` snd t : B

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 106 / 124



Curry-Howard Isomorphism III

Γ ` A
Γ ` A ∨ B

Γ ` a : A
Γ ` inl a : A + B

Γ ` B
Γ ` A ∨ B

Γ ` b : B
Γ ` inr b : A + B

Γ ` A ∨ B Γ,A ` C Γ,B ` C

Γ ` C

Γ ` m : A ∨ B Γ, x : A ` t : C Γ, x : B ` u : C

Γ ` case m of inl(a) => t | inr(a) => u : C
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Simplification Rules

fst(A,B) = A
snd(A,B) = B

case (inl m) of inl(a) => t|inr(a) => u = t[x := m]
case (inr m) of inl(a) => t|inr(a) => u = u[x := m]
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Curry-Howard Isomorphism

Logic λ-calculus/programming
formula type

proof term/program
proof checking type checking

proof normalization β-reduction
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Example : building a proof term

Building a proof, as a λ-term for the formula: A→ (A→ B)→ B.

Make it a closed formula,i.e. ∀AB : Prop,A→ (A→ B)→ B.

We must now build a λ-term whose type is:
∀A B : Prop,A→ (A→ B)→ B.

I This shall be a function whose arguments are A, B, H1 and H2, its
body of type B must be built from A, B, H1 et H2.
fun (A:Prop) (B:Prop) (H1:A) (H2:A->B) => ...:B

I A way to build a term of type B is to take the term H1 of type A and
to apply the (functional) term H2 to it. This yields the application
(H2 H1).

I A possible proof term for ∀AB : Prop,A→ (A→ B)→ B is fun

(A:Prop) (B:Prop) (H1:A) (H2:A->B) => (H2 H1).
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Exercises

Assume we have the following terms available:

and_ind : forall A B P : Prop,

(A -> B -> P) -> A /\ B -> P

conj : forall A B : Prop, A -> B -> A /\ B

or_ind : forall A B P : Prop,

(A -> P) -> (B -> P) -> A \/ B -> P

or_introl : forall A B : Prop, A -> A \/ B

or_intror : forall A B : Prop, B -> A \/ B

Build a proof term for the following statements:

1 (A→ B → C )→ (A→ B)→ A→ C

2 (A→ B)→ (B → C )→ (A→ C )

3 A ∧ B → B ∧ A

4 A ∧ B → A ∨ B

5 A ∨ B → B ∨ A
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Checking Proof Automation

Proof checking

We can use arbitrary tool to generate proofs. In the end, it should produce
a proof term (a trace), which is type-checked by the system to ensure that
it really is a proof of the statement at stake.
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Examples of Proof Automation (lia example.v)

Automated Tactics for logic: intuition, first order, . . .

Decision Procedures for numbers: lia

Going further: using external SMT solvers and importing traces
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In Coq, some logic connectives are primitive and others are defined using
inductive types:

Defined ones:

>
⊥
∧
∨
∃
¬A ≡ A⇒ ⊥

Primitive ones:

∀
⇒
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True

Inductive True : Prop :=

I : True.

True_ind

: forall P : Prop, P -> True -> P

Useless. . .
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False

Inductive False : Prop := .

False_ind

: forall P : Prop, False -> P
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Example

Theorem ex_falso_quodlibet : forall (P:Prop),

False -> P.

Proof.

intros P F.

inversion F.

Qed.
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AND

Inductive and (A B : Prop) : Prop :=

conj : A -> B -> and A B.

and_ind

: forall A B P : Prop,

(A -> B -> P) -> and A B -> P
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OR

Inductive or (A: Prop) (B : Prop) : Prop :=

| or_introl : A -> or A B

| or_intror : B -> or A B.

or_ind

: forall A B P : Prop,

(A -> P) -> (B -> P) -> or A B -> P
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Existential quantification

Inductive ex (A: Set) (P: A -> Prop) : Prop :=

| ex_intro : forall x : A, P x -> ex A P.

ex_ind

: forall (A : Set) (P : A -> Prop) (P0 : Prop),

(forall x : A, P x -> P0) -> ex A P -> P0
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Equality

Inductive eq (A:Type) (x:A) : A -> Prop :=

refl_equal : eq A x x.

eq_ind: forall (A:Type)(x:A)(P:A->Prop),

P x -> forall y: A, x=y -> P y
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Function vs Predicate

We can use an inductive predicate to describe a function in a Prolog-like
style:

Example: Syracuse

U0 = N Un+1 =

{
Un
2 if Un is even

3Un + 1 if Un is odd

Inductive syracuse (N:nat) : nat -> nat -> Prop :=

done : syracuse N 0 N

| even_case : forall n p,even p ->

syracuse N n p -> syracuse N (S n) (div2 p)

| odd_case : forall n p , odd p ->

syracuse N n p -> syracuse N (S n) (S(p+p+p)).
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Syracuse :how to carry out a proof?

Lemma example : syracuse 15 1 46.

replace (46) with (S(15+15+15)) by reflexivity.

apply odd_case.

repeat constructor.

constructor.

Qed.
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