
A Gentle Introduction to the Coq Proof Assistant,
from a Teaching Perspective

Nicolas Magaud

Lab. ICube UMR 7357 CNRS Université de Strasbourg

PAT 2023 Thematic School
19 - 23 June 2023
Val d’Ajol, France

https://dpt-info.u-strasbg.fr/~magaud/PAT2023

https://dpt-info.u-strasbg.fr/~magaud/PAT2023

Three-part Course (Nicolas Magaud and Yves Bertot)

1 Monday 11:00-12:30 : Logic and Computation (Nicolas Magaud)

2 Tuesday 14:00-15:30 : Trusting Proof Automation (Nicolas Magaud)

3 Wednesday 17:00-18:00 : Numbers in Coq (Yves Bertot)

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 2 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 3 / 124

What you will learn in this course:

1 Better understand what a proof is, carry out proofs more carefully.

2 Discover the field of formal proofs.

3 Practical aspects: using Coq.

4 More theoretical aspects : the Curry-Howard isomorphism, . . .

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 4 / 124

Acknowlegements

This course is built upon the lectures that Julien Narboux and I give yearly
to students of the computer science master at the University of Strasbourg.
This is greatly inspired by lectures by other people including:

Yves Bertot

Gilles Dowek

Hugo Herbelin

Pierre Lescanne

David Pichardie

Benjamin Werner

Laurent Théry

. . .

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 5 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 6 / 124

What is a proof ?

something convincing,

a sequence of deductions from the axioms,

an algorithm (Curry-Howard isomorphism)

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 7 / 124

Yes but. . .

It may be difficult to be sure that a proof is actually correct:

the number of statements involved

the occurence of computations

too many technical details, too many subcases

the size of the proof

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 8 / 124

Verifying that a proof is correct
When computations occur

Four color theorem

No more than four colors are required to color the regions of any map so
that no two adjacent regions have the same color.

1976 Appel and Hake (1478 configurations, 1200 hours of
computations)

2004 Formalized in Coq by Gonthier and Werner

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 9 / 124

Verifying that a proof is correct
When computations occur

Kepler conjecture/Hales theorem

For a packing of equally-sized spheres, the maximum
density is obtained by a face-centered cubic arrangement.

1998 Mathematical proof by Thomas Hales

2004 - 2014 Projet Flyspeck: formalizing the theorem
using HOL-light with contributions in Coq
and Isabelle (more than 300 000 lines) Photo by Robert

Cudmore

Robert MacPherson, editor, wrote:
“The news from the referees is bad, from my perspective. They have not been able
to certify the correctness of the proof, and will not be able to certify it in the future,
because they have run out of energy to devote to the problem. This is not what I
had hoped for. The referees put a level of energy into this that is, in my experience,
unprecedented. ”

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 10 / 124

Verifying that a proof is correct
The proof size

Théorème de Feit-Thompson

Theorem Feit_Thompson (gT:finGroupType) (G:{group gT}):

odd ##|G| -> solvable G.

Proof in Coq by Georges Gonthier et al. (september 2012)a:
170 000 lines, 15 000 definitions, 4 200 theorems

ahttps://mathlesstraveled.com/2012/11/11/

a-computer-checked-proof-of-the-odd-order-theorem/

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 11 / 124

https://mathlesstraveled.com/2012/11/11/a-computer-checked-proof-of-the-odd-order-theorem/
https://mathlesstraveled.com/2012/11/11/a-computer-checked-proof-of-the-odd-order-theorem/

Verifying that a proof is correct
Some success stories

CompCert: a C compiler proved correct in Coq (Xavier Leroy et. al.)

seL4: a micro kernel proved correct in Isabelle (Gerwin Klein et. al.)

A payment system (Gemalto, Andronick et. al.)

The automation of some underground lines (e.g. line 14 in Paris)

A hash function (SHA 256, Andrew Appel, 2015)

A crypotographic protocol (OpenSSL HMAC, Andrew Appel et. al.,
2015)

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 12 / 124

Improving the quality of proofs

1 Make the hypotheses clearer
(as precise as possible, not too restrictive)

2 Make it clear what a good proof actually is

3 Be as precise as possible so that we do not need to understand the
proof to check it.

4 Automate some parts of the proofs

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 13 / 124

The Coq Proof Assistant

What is Coq ?

A Proof Assistant, developped and distributed by INRIA

Try it easily ! https://coq.vercel.app/

Install with opam: https://coq.inria.fr/opam-using.html

It allows :

to define mathematical notions/programs,

and to prove some properties of these objects.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 14 / 124

https://coq.vercel.app/
https://coq.inria.fr/opam-using.html

ACM Software System Award
2015 GCC

2014 Mach

2013 Coq

2012 LLVM

2011 Eclipse

2010 GroupLensCFRS

2009 VMware

2008 Gamma Parallel Database System

2007 Statemate

2006 Eiffel

2005 The Boyer-Moore Theorem Prover

2004 Secure Network Programming

2003 Make

2002 Java

. . .

1991 TCP-IP
Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 15 / 124

Why do we (Need to) Formalize Mathematical Results?

The Example of the Finite Projective Space PG(3,3)
I Projective Incidence Geometry only features points and lines, together

with an incidence relation (∈).
I Projective Incidence Geometry can be captured by a set of axioms.
I PG(3,3) is a finite projective space with 35 points and 130 lines.

It is a model of Projective Incidence Geometry.
I Each line contains exactly 4 points.
I Lines are easily represented as sets of points, as Alan R. Prince did in a

journal article.1

I The specification is actually wrong
(this is a minor error, but still an error).

1Projective planes of order 12 and PG(3,3). Discrete Mathematics,
208-209 :477-483, 1999.
Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 16 / 124

PG(3,3) - description of the incidence relation

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 17 / 124

PG(3,3) - description of the incidence relation

30

18 27

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 18 / 124

Proof Process in Coq

Developing a proof in Coq is achieved in two successive steps:

first a proof is interactively built by the user ;

then the proof is automatically checked by the system.

The user does the proof work,
the system simply checks that the proof is actually correct.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 19 / 124

Useful Ressources

Coq web site:
I Download:

http://coq.inria.fr/

I Coq reference manual:

http://coq.inria.fr/doc/

Books and Exercices :
I Coq’Art by Y. Bertot and P. Castéran

(available in French, English and Chinese)

http://www.labri.fr/perso/casteran/CoqArt/

I Software Foundations par Benjamin C. Pierce, Chris Casinghino,
Michael Greenberg,Vilhelm Sjöberg, Brent Yorgey

http://www.cis.upenn.edu/~bcpierce/sf/

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 20 / 124

http://coq.inria.fr/
http://coq.inria.fr/doc/
http://www.labri.fr/perso/casteran/CoqArt/
http://www.cis.upenn.edu/~bcpierce/sf/

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 21 / 124

Syntax

Logic Coq

⊥ False

> True

a = b a = b

a 6= b a <> b

¬A ~ A

A ∨ B A \/ B

A ∧ B A /\ B

A⇒ B A -> B

A⇔ B A <-> B

f (x , y , z) (f x y z)

∀xy ,P(x , y) forall (x y:A), P x y

∃xy ,P(x , y) exists (x:A) (y:B), P x y

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 22 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 23 / 124

Sequent

Formal deduction systems, used to modelize logics, often rely on a
language based on sequents. It is a couple (Γ,F) with:

a multi-set of formula Γ (the order is not relevant, some elements
may be repeated) and

a formula F .

This couple is usually denoted by

Γ ` F

Intuitively, a sequent represents the fact that from the hypotheses of Γ,
one can deduce F .

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 24 / 124

Interaction with Coq

In Coq, instead of writing {A1,A2, . . . ,An} ` P, we write:

H_1 : A_1

H_2 : A_2

H_n : A_n

___________________________________ (1/1)

P

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 25 / 124

Natural Deduction

We use sequents.

We only handle hypotheses.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 26 / 124

Rules for Minimal Logic

if A ∈ Γ
Γ ` A

Γ,A ` B
Intro →

Γ ` A→ B
Γ ` A→ B Γ ` A

Elim →
Γ ` B

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 27 / 124

Proof of the formula K

A,B ` A
Intro →

A ` B → A
Intro →` A→ B → A

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 28 / 124

Proof of the formula S

A→ B → C ,A→ B,A ` A→ B → C A→ B → C ,A→ B,A ` A
MP

A→ B → C ,A→ B,A ` B → C ... X ...
MP

A→ B → C ,A→ B,A ` C
Intro →

A→ B → C ,A→ B ` A→ C
Intro →

A→ B → C ` (A→ B)→ A→ C
Intro →` (A→ B → C)→ (A→ B)→ A→ C

X:

A→ B → C ,A→ B,A ` A→ B A→ B → C ,A→ B,A ` A
MP

A→ B → C ,A→ B,A ` B

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 29 / 124

Rules for ∧ (and)

Γ ` P Γ ` Q
Intro ∧

Γ ` P ∧ Q

Γ ` P ∧ Q
Elim ∧l

Γ ` P

Γ ` P ∧ Q
Elim ∧r

Γ ` Q

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 30 / 124

Rules for ∨ (or)

Γ ` P
Intro ∨l

Γ ` P ∨ Q

Γ ` Q
Intro ∨r

Γ ` P ∨ Q

Γ ` P ∨ Q Γ,P ` R Γ,Q ` R
Elim ∨

Γ ` R

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 31 / 124

Rule for ¬ (not)

Γ,A ` ⊥
Intro ¬

Γ ` ¬A

Γ ` ¬A Γ ` A
Elim ¬

Γ ` ⊥

Note

We can also write ¬A as A→ ⊥.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 32 / 124

Rule for ⊥ (bottom)

Γ ` ⊥
Elim ⊥

Γ ` P

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 33 / 124

Rules for ∀ (forall)

Γ ` A ∀ intro (x is not free in Γ)
Γ ` ∀x A

Γ ` ∀x A ∀ elim
Γ ` A[x ← t]

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 34 / 124

Rules of ∃ (exist)

Γ ` A[x ← t]
∃ intro

Γ ` ∃x A

Γ ` ∃x A(x) Γ,A(x) ` B
∃ elim (x is not free neither in Γ nor in B)

Γ ` B

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 35 / 124

Names

Note

Rules are named after their behavior when read from top to bottom.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 36 / 124

Summary (cheat sheet)
Γ,A ` B

Intro →
Γ ` A→ B

Γ ` P
Intro ∨l

Γ ` P ∨ Q

Γ ` P Γ ` Q
Intro ∧

Γ ` P ∧ Q

Γ,A ` ⊥
Intro ¬

Γ ` ¬A

Γ ` A→ B Γ ` A
Elim →

Γ ` B

Γ ` Q
Intro ∨r

Γ ` P ∨ Q

Γ ` P ∧ Q
Elim ∧l

Γ ` P

Γ ` ¬A Γ ` A
Elim ¬

Γ ` ⊥

if A ∈ Γ
Γ ` A

Γ ` P ∨ Q Γ,P ` R Γ,Q ` R
Elim ∨

Γ ` R

Γ ` P ∧ Q
Elim ∧r

Γ ` Q

Γ ` ⊥
Elim ⊥

Γ ` P

Γ ` ∃x A(x) Γ,A(x) ` B ∃elim
x 6∈ FV (Γ) ∪ FV (B)Γ ` B

Γ ` A ∀ intro (x 6∈ FV (Γ))
Γ ` ∀x A

Γ ` A[x ← t]
∃ intro

Γ ` ∃x A

Γ ` ∀x A ∀ elim
Γ ` A[x ← t]

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 37 / 124

Coq Tactics for Natural Deduction

Provided an inference rule R with n premisses of the shape:

Γ1 ` P1 . . . Γn ` Pn
R

Γ ` G

Applying the corresponding Coq tactic transforms the current goal:

Γ ` G

into n new subgoals:
Γ1 ` P1

. . .

Γn ` Pn

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 38 / 124

Axiom Rule

if A ∈ Γ
Γ ` A

X : A

============

A

Proof completed.

assumption. or apply X.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 39 / 124

Intro Rule for →
Γ,A ` B

Intro →
Γ ` A→ B

....

=====================

A -> B

X : A

=====================

B

intro X. or intros. to introduce several hypotheses.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 40 / 124

Elimination Rule for →
Γ ` A→ B Γ ` A

Elim →
Γ ` B

....

=====================

B

=====================

A -> B

=====================

A

cut A.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 41 / 124

An Alternative Eliminate Rule for →
Γ ` A Γ,A ` B

Γ ` B

....

=====================

B

...

=====================

A

...

A

=====================

B

assert (A).

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 42 / 124

Another Alternative for Elim →
Γ,H : A→ B ` A

Γ,H : A→ B ` B

H: A -> B

=====================

B

H: A -> B

=====================

A

apply H.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 43 / 124

Another Alternative for Elim →
Γ,H : H1 → H2 → B ` A

Γ,H : A→ B ` B

H: H1 -> H2 -> B

=====================

B

H: H1 -> H2 -> B

=====================

H1

H: H1 -> H2 -> B

=====================

H2

apply H.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 44 / 124

Introduction Rule for ∧
Γ ` A Γ ` B

Intro ∧
Γ ` A ∧ B

....

=====================

A /\ B

=====================

A

=====================

B

split.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 45 / 124

Elimination Rule for ∧ l

Γ ` A ∧ B
Elim ∧l

Γ ` A

....

=====================

A

=====================

A /\ B

assert (T: A /\ B);[idtac|elim T;intros;assumption].

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 46 / 124

Introduction Rule for ∨ r

Γ ` B
Intro ∨r

Γ ` A ∨ B

....

=====================

A \/ B

=====================

B

right.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 47 / 124

Introduction Rule for ∨ l

Γ ` A
Intro ∨l

Γ ` A ∨ B

....

=====================

A \/ B

=====================

A

left.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 48 / 124

Elimination Rule for ∨
Γ ` A ∨ B Γ,A ` G Γ,B ` G

Elim ∨
Γ ` G

Γ,H : A ∨ B,A ` G Γ,H : A ∨ B,B ` G

Γ,H : A ∨ B ` G

....

H : A \/ B

=====================

G

H : A \/ B

H0 : A

=====================

G

H : A \/ B

H0 : B

=====================

G

elim H;intro. or destruct H. or decompose [or] H.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 49 / 124

An Alternative Elimation Rule for ∧
Γ,H : A ∧ B,H0 : A,H1 : B ` G

Γ,H : A ∧ B ` G

....

H : A /\ B

=====================

G

H : A /\ B

H0 : A

H1 : B

=====================

G

elim H;intro. or destruct H. or decompose [and] H.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 50 / 124

Elimination Rule for ⊥
Γ ` ⊥

Elim ⊥
Γ ` P

....

=====================

P

....

=====================

False

exfalso.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 51 / 124

Elimination Rule for ⊥
Ax

Γ,H : ⊥ ` ⊥
Elim ⊥

Γ,H : ⊥ ` P

....

H : False

=====================

P

Proof completed.

elim H.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 52 / 124

Introduction Rule for ¬
Γ,A ` ⊥

Intro ¬
Γ ` ¬A

....

=====================

~ A

H : A

=====================

False

intro.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 53 / 124

Elimination Rule for ⊥
Γ ` ¬A Γ ` A

Elim ¬
Γ ` ⊥

Elim ⊥
Γ ` G

....

=====================

G

...

=====================

A

...

=====================

~ A

absurd A.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 54 / 124

Some Coq tactics (to remember)

intro (introduces hypotheses in the context)

assert (assumes a statement holds)

apply (applies a theorem)

exists (provides a witness for a ’exists’)

decompose [ex] H

(provides witnesses for all ’exists’ in the hypothesis H)

decompose [and] H (splits all ’and’ of H)

decompose [or] H (carries out case reasoning on all ’or’ of H)

unfold t (unfolds the definition of t)

simpl

reflexivity, symmetry, transitivity

rewrite, replace ... with

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 55 / 124

Exercises (exercises logic.v)

l0: ∀A B C : Prop, ((A→ B) ∧ (B → C))→ (A→ C)

l1: ∀A B : Prop,A ∨ B → B ∨ A

l2: ∀A B C : Prop, ((A ∧ B)→ C)→ A→ B → C

l3: ∀A B C : Prop, (A→ B → C)→ (A ∧ B)→ C

l4: ∀A B C : Prop, (A ∧ (B ∨ C))→ ((A ∧ B) ∨ (A ∧ C))

l5: ∀A B C : Prop, ((A ∧ B) ∨ (A ∧ C))→ (A ∧ (B ∨ C))

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 56 / 124

Composing tactics

tac0; tac1 applies the tactic tac0 to the current goal, and then the
tactic tac1 to the n subgoals generated by tactic tac0.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 57 / 124

Some notations

Logic Coq

∧ /\

∨ \/

¬ ~

⇒ ->

⇔ <->

∀ forall

∃ exists

Parentheses

The arrow is right-associative: (A→ B → C) corresponds to
(A→ (B → C)).

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 58 / 124

Prop vs bool

Prop is the type of propositions that we prove.
Examples: True, False, 2<3, forall x, x=x,
leb 2 3 = true.

bool is the type of boolean values, which can be used in programs
(in if-then-else constructs).
Examples: true, false, leb 2 3

Compute (leb 2 3).

= true

: bool

Compute (2 <= 3).

= 2 <= 3

: Prop

One may prove that forall b: bool, b=true \/ b=false.
But we do not always consider that forall P, P \/ ~P holds.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 59 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 60 / 124

Intuitionist vs Classical Logic

The following formulae are valid in classical logic:

excluded middle P ∨ ¬P
elimination of double negation ¬¬P → P

Pierce’s law ((P → Q)→ P)→ P

These propositions acknowledge that there are some proofs which do not
build an object satisfying the considered statement.
Some mathematicians rejected these propositions:

Brouwer,

Heyting, . . .

A proof is said to be constructive if it does not require the excluded middle
principle.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 61 / 124

Properties of intuitionist logic

Disjunction

From a proof of A ∨ B, we can extract a proof of A or a proof of B.

Witness

From a proof of ∃x ,A(x) we can extract a witness t and a proof of A(t).

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 62 / 124

Example of a classic proof

Let us show that:

∃x , y 6∈ Q, xy ∈ Q

Consider
√

2
√

2
.

a If
√

2
√

2 ∈ Q.
We choose x =

√
2 et y =

√
2.

b Otherwise
√

2
√

2 6∈ Q.

We choose x =
√

2
√

2
and y =

√
2.

xy = (
√

2

√
2
)

√
2

=
√

2

√
2×
√

2
=
√

2
2

= 2 ∈ Q

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 63 / 124

A theorem in analysis actually states that
√

2
√

2
is irrational and that we

must choose the case “b“ , but the proof relying on the excluded middle
does not tell this.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 64 / 124

Classic propositional logic

We add the rule:

Reductio ad absurdum

Γ,¬P ` ⊥
RAA

Γ ` P

Note

We could have written:

Γ ` ¬¬P
RAA’

Γ ` P

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 65 / 124

Double Negation

¬¬A,¬A ` ¬¬A ¬¬A,¬A ` ¬A
elim ¬¬¬A,¬A ` ⊥

RAA¬¬A ` A
intro →` ¬¬A→ A

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 66 / 124

Law of Excluded Middle

¬(A ∨ ¬A) ` ¬(A ∨ ¬A)

¬(A ∨ ¬A),A ` A
intro ∨l¬(A ∨ ¬A),A ` A ∨ ¬A ¬(A ∨ ¬A),A ` ¬(A ∨ ¬A)

elim ⊥¬(A ∨ ¬A),A ` ⊥
intro ⊥¬(A ∨ ¬A) ` ¬A

intro ∨r¬(A ∨ ¬A) ` A ∨ ¬A
¬(A ∨ ¬A) ` ⊥

RAA` A ∨ ¬A

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 67 / 124

Pierce law

(A → B) → A,¬A ` ¬A

(A → B) → A,¬A ` (A → B) → A

Γ,¬A, A ` A Γ,¬A, A ` ¬A
elim ¬

(A → B) → A,¬A, A ` ⊥
elim ⊥

(A → B) → A,¬A, A ` B
intro →

(A → B) → A,¬A ` A → B
elim →

(A → B) → A,¬A ` A
elim ⊥

(A → B) → A,¬A ` ⊥
RAA

(A → B) → A ` A
Intro →

` ((A → B) → A) → A

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 68 / 124

Exercises

Definition EM := (forall A:Prop, A\/~A).

Definition DN := (forall A:Prop, ~~A->A).

Definition contrap := (forall A B:Prop,(~B->~A) -> (A->B)).

Definition Pierce := (forall A B:Prop, ((A->B)->A) -> A).

Definition neg_impl := forall P Q:Prop, (P->Q)->(~P\/Q).

Definition all := [EM; DN; contrap; Pierce; neg_impl].

Lemma all_equiv :

forall x y, In x all -> In y all -> x <-> y.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 69 / 124

Coq is an intuitionist system

By default, Coq works in intuitionist logic.
To use the excluded middle, we must explicit require it by the command:

Require Export Classical.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 70 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 71 / 124

Introduction to currying

Prove that the following formula holds:

(A→ (B → C))↔ (A ∧ B → C)

Note: As → is right-associative, we could have writtten:

(A→ B → C)↔ (A ∧ B → C)

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 72 / 124

Currying

Definition

Currying consists in transforming a function with takes several arguments
into a function with a single argument returning a function which takes as
arguments all the remaining arguments.

Note: this operation is named after Haskell Curry (1900-1982).

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 73 / 124

Example

In OCaml

Instead of writing:

let f(x,y) = x + y;;

val f : int * int -> int = <fun>

We write:

let f x = fun y -> x + y;;

val f : int -> int -> int = <fun>

or

let f x y = x + y;;

val f : int -> int -> int = <fun>

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 74 / 124

Example

In Coq

We usually curry all functions and statements. We shall rather write

Lemma foo : forall p q : R, p > 0 -> q > 0 -> p*q > 0.

than:

Lemma foo : forall p q : R, p > 0 /\ q > 0 -> p*q > 0.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 75 / 124

Why use currying?

To be able to carry out partial applications more easily.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 76 / 124

Transition: Sorts

A sort is a type for types.
Propositions A, B, etc. are types (those of their proof terms).
These types are of type Prop.
We say that A, B, etc. are of sort Prop.
On the other side, boolean bool, integers nat are types whose type is Set.
Set et Prop are of type Type.

Set : where we compute

Prop : where we reason

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 77 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 78 / 124

Inductive Datatypes

Coq relies on a formalism called the Calculus of Inductive Constructions.

Main features

Based on type theory

Higher-order logic (functions are first-class citizens)

Data-structures can be represented by Inductive Types

There is no distinction between terms and types:
bool is the type of true and false and bool is also a term of type
Set.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 79 / 124

Inductive Definitions

Inductive definitions consist in:

providing the basic elements,

providing rules to build new elements from the already-known
elements.

Examples

Natural Numbers

Lists, Trees, . . .

Inductive Predicates

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 80 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 81 / 124

Peano integers (natural numbers)

1 The element zero, denoted by 0 is a natural number.

2 If n is a natural number, then its successor S(n) is a natural number.

Alternative notation: P ::= O | S P

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 82 / 124

Coq vs OCaml

Coq

Inductive nat : Set :=

O : nat

| S : nat -> nat.

Caml
type nat =

O

| S of nat

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 83 / 124

Recursion/Induction on nat

forall P : nat -> Prop,

P 0 ->

(forall n : nat, P n -> P (S n)) ->

forall n : nat, P n

Universal Quantification on a property P: nat -> Prop

Conclusion : forall n : nat, P n

2 cases:
1 one base case
2 one induction case

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 84 / 124

Induction Principle

Applying the induction principle: elim n generates 2 subgoals.

forall n : nat, P n

P 0

n : nat

IHn : P(n)

P(S(n))

In Coq, an induction principle is automatically generated after each
inductive definition.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 85 / 124

Constructors are distinct (free)

To use the specific property, we can use the tactic discrimate.

Lemma true_false : true<>false.

intro H; discriminate.

Qed.

Lemma zero_succ : forall n:nat, ~(S n)=O.

intros n H; discriminate H.

Qed.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 86 / 124

Constructors are injective

To use the specific property, we can use the tactic injection.

Lemma test_injection: forall x y, S x = S y -> x=y.

Proof.

intros.

injection H.

intro.

assumption.

Qed.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 87 / 124

Aparté: equality in Coq

Check eq.

eq : forall A : Type, A -> A -> Prop

Check refl_equal.

refl_equal : forall (A : Type) (x : A), x = x

It is a polymorphic type (A:Type). Thus the equality relation is
generic and its first argument is the type of elements to be compared.

Equality is a reflexive, symmetric and transitive relation. These
properties can be used through the tactics reflexivity, symmetry
and transitivity t.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 88 / 124

Reasoning about equality

Principle of Leibnitz equality

Check eq_ind.

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),

P x -> forall y : A, x = y -> P y

Tactics for equality

rewrite

rewrite in

replace with

replace with in

subst

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 89 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 90 / 124

Recursive Function: fixpoint definition

Adding natural numbers:

Fixpoint plus (n m : nat) {struct n} : nat :=

match n with

| O => m

| S p => S (plus p m)

end.

Eval compute in (plus O 56).

Eval compute in (plus 12 67).

Eval compute in (plus 67 12).

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 91 / 124

Termination

In Coq, functions must always terminate!

The annotation {struct n} tells the system which argument decreases
structurally at each recursive call. Recursive calls are carried out on strict
subterms. This enables to ensure the termination of the function.

Example

Fixpoint bar (n:nat) : nat := bar n.

This definition is rejected by the system and leads to the following error:

Error: Recursive definition of bar is ill-formed.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 92 / 124

Otherwise we get . . .

. . . a contradiction!

Fixpoint foo (b :bool) : bool := negb (foo b).

We have foo true = negb (toto true)

If foo true = false then foo true = true.

If foo false = true then foo false = false.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 93 / 124

Functions are total!

In Coq, all functions must be total!

What to do when we need to non total function?

We can use the option type:

Inductive option (A:Type) : Type :=

| Some : A -> option A

| None : option A.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 94 / 124

The depth of filtering can be more than 1.
This is useful for checking parity or computing Fibonacci:

Fixpoint even (n:nat) : Prop :=

match n with O => True

| (S O) => False

| (S (S p)) => pair p

end.

Eval compute in (even 8789).

Eval compute in (even 8790).

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 95 / 124

Example: Fibonacci

Fixpoint fib n {struct n} :=

match n with

O => 1

| S O => 1

| S ((S p) as p1) => fib p + fib p1

end.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 96 / 124

Computing with Functions

Once a fixpoint definition is entered, additional computational rules are
added to the system (one by match branches).

tactics compute, vm compute , simpl are useful to compute in the
current goal.

simpl in H, to compute in a specific hypothesis H.

Example:

Reductions for plus:
plus O m −→ι m

plus (S n) m −→ι S (plus n m)

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 97 / 124

Associativity of addition +

Lemma plus_assoc: forall n m p : nat,

(plus (plus n m) p) = (plus n (plus m p))

Proof by induction : intros n m p; elim n.

1 Base case : 0 + (m + p) = 0 + m + p
I simplification; reflexivity of equality.

2 induction case:. . .

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 98 / 124

Three Examples of Proofs

proving a statement about natural numbers (by induction)

6 | n3 − n

sum of the n first integers (interactive example)

2 ∗ Σn
i=0 i = n ∗ (n + 1).

making an amount greater than 8 with coins of 3 and 5

∀m : nat,∃i : nat, ∃j : nat, 8 + m = 5 ∗ i + 3 ∗ j .

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 99 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 100 / 124

Tarski Semantics

Truth Tables

p 0 0 1 1
q 0 1 0 1

p ∧ q 0 0 0 1
p ∨ q 0 1 1 1
p → q 1 1 0 1

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 101 / 124

Heyting-Kolmogorov Semantics

Heyting-Kolmogorov semantics consist in providing a functional
interpretation to proofs.

A proof of A→ B is a function which, from a proof of A produces a
proof of B.

A proof of A ∧ B is a couple composed of a proof of A and of a proof
of B.

A proof of A ∨ B is a couple (i , p) with (i = 0 and p a proof of A) or
(i = 1 and p a proof of B).

A proof of ∀x .A is a function which, for each object t builds an object
of type A[x := t].

This interpretation consists in computing with proofs. This is very close to
functional programming and λ-calculus.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 102 / 124

Example

Example from a type point of view:

If H has type A→ B et H ′ has type A
then

H H ′ has B.

Example from a proof point of view:

If H is a proof of A→ B and H ′ is a proof of A
then

H H ′ is a proof of B.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 103 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 104 / 124

Curry-Howard Isomorphism I

logic programming

Γ,A ` B
Γ ` A⇒ B

Γ, x : A ` t : B
Γ ` (fun x : A 7→ t) : A→ B

Γ ` A⇒ B Γ ` A
Γ ` B

Γ ` f : A→ B Γ ` a : A
Γ ` f (a) : B

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 105 / 124

Curry-Howard Isomorphism II

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` a : A Γ ` b : B
Γ ` (a, b) : A× B

Γ ` A ∧ B
Γ ` A

Γ ` t : A× B
Γ ` fst t : A

Γ ` A ∧ B
Γ ` B

Γ ` t : A× B
Γ ` snd t : B

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 106 / 124

Curry-Howard Isomorphism III

Γ ` A
Γ ` A ∨ B

Γ ` a : A
Γ ` inl a : A + B

Γ ` B
Γ ` A ∨ B

Γ ` b : B
Γ ` inr b : A + B

Γ ` A ∨ B Γ,A ` C Γ,B ` C

Γ ` C

Γ ` m : A ∨ B Γ, x : A ` t : C Γ, x : B ` u : C

Γ ` case m of inl(a) => t | inr(a) => u : C

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 107 / 124

Simplification Rules

fst(A,B) = A
snd(A,B) = B

case (inl m) of inl(a) => t|inr(a) => u = t[x := m]
case (inr m) of inl(a) => t|inr(a) => u = u[x := m]

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 108 / 124

Curry-Howard Isomorphism

Logic λ-calculus/programming
formula type

proof term/program
proof checking type checking

proof normalization β-reduction

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 109 / 124

Example : building a proof term

Building a proof, as a λ-term for the formula: A→ (A→ B)→ B.

Make it a closed formula,i.e. ∀AB : Prop,A→ (A→ B)→ B.

We must now build a λ-term whose type is:
∀A B : Prop,A→ (A→ B)→ B.

I This shall be a function whose arguments are A, B, H1 and H2, its
body of type B must be built from A, B, H1 et H2.
fun (A:Prop) (B:Prop) (H1:A) (H2:A->B) => ...:B

I A way to build a term of type B is to take the term H1 of type A and
to apply the (functional) term H2 to it. This yields the application
(H2 H1).

I A possible proof term for ∀AB : Prop,A→ (A→ B)→ B is fun

(A:Prop) (B:Prop) (H1:A) (H2:A->B) => (H2 H1).

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 110 / 124

Exercises

Assume we have the following terms available:

and_ind : forall A B P : Prop,

(A -> B -> P) -> A /\ B -> P

conj : forall A B : Prop, A -> B -> A /\ B

or_ind : forall A B P : Prop,

(A -> P) -> (B -> P) -> A \/ B -> P

or_introl : forall A B : Prop, A -> A \/ B

or_intror : forall A B : Prop, B -> A \/ B

Build a proof term for the following statements:

1 (A→ B → C)→ (A→ B)→ A→ C

2 (A→ B)→ (B → C)→ (A→ C)

3 A ∧ B → B ∧ A

4 A ∧ B → A ∨ B

5 A ∨ B → B ∨ A

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 111 / 124

Checking Proof Automation

Proof checking

We can use arbitrary tool to generate proofs. In the end, it should produce
a proof term (a trace), which is type-checked by the system to ensure that
it really is a proof of the statement at stake.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 112 / 124

Examples of Proof Automation (lia example.v)

Automated Tactics for logic: intuition, first order, . . .

Decision Procedures for numbers: lia

Going further: using external SMT solvers and importing traces

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 113 / 124

1 Introduction

2 Everyday Logic, in Coq
Natural Deduction
Intuitionist vs Classical Logic
Currying

3 Datatypes, Functions, Lemmas and Proofs
Inductive Datatypes
Operations and Recursive Functions
Examples of Proofs

4 How to Trust Proof Automation
Heyting-Kolmogorov Semantics
Curry-Howard Isomorphism
Examples of Proof Automation

5 Bonus

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 114 / 124

In Coq, some logic connectives are primitive and others are defined using
inductive types:

Defined ones:

>
⊥
∧
∨
∃
¬A ≡ A⇒ ⊥

Primitive ones:

∀
⇒

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 115 / 124

True

Inductive True : Prop :=

I : True.

True_ind

: forall P : Prop, P -> True -> P

Useless. . .

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 116 / 124

False

Inductive False : Prop := .

False_ind

: forall P : Prop, False -> P

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 117 / 124

Example

Theorem ex_falso_quodlibet : forall (P:Prop),

False -> P.

Proof.

intros P F.

inversion F.

Qed.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 118 / 124

AND

Inductive and (A B : Prop) : Prop :=

conj : A -> B -> and A B.

and_ind

: forall A B P : Prop,

(A -> B -> P) -> and A B -> P

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 119 / 124

OR

Inductive or (A: Prop) (B : Prop) : Prop :=

| or_introl : A -> or A B

| or_intror : B -> or A B.

or_ind

: forall A B P : Prop,

(A -> P) -> (B -> P) -> or A B -> P

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 120 / 124

Existential quantification

Inductive ex (A: Set) (P: A -> Prop) : Prop :=

| ex_intro : forall x : A, P x -> ex A P.

ex_ind

: forall (A : Set) (P : A -> Prop) (P0 : Prop),

(forall x : A, P x -> P0) -> ex A P -> P0

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 121 / 124

Equality

Inductive eq (A:Type) (x:A) : A -> Prop :=

refl_equal : eq A x x.

eq_ind: forall (A:Type)(x:A)(P:A->Prop),

P x -> forall y: A, x=y -> P y

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 122 / 124

Function vs Predicate

We can use an inductive predicate to describe a function in a Prolog-like
style:

Example: Syracuse

U0 = N Un+1 =

{
Un
2 if Un is even

3Un + 1 if Un is odd

Inductive syracuse (N:nat) : nat -> nat -> Prop :=

done : syracuse N 0 N

| even_case : forall n p,even p ->

syracuse N n p -> syracuse N (S n) (div2 p)

| odd_case : forall n p , odd p ->

syracuse N n p -> syracuse N (S n) (S(p+p+p)).

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 123 / 124

Syracuse :how to carry out a proof?

Lemma example : syracuse 15 1 46.

replace (46) with (S(15+15+15)) by reflexivity.

apply odd_case.

repeat constructor.

constructor.

Qed.

Nicolas Magaud (Univ. Strasbourg) The Coq Proof Assistant 19 - 23 June 2023 124 / 124

	Introduction
	Everyday Logic, in Coq
	Natural Deduction
	Intuitionist vs Classical Logic
	Currying

	Datatypes, Functions, Lemmas and Proofs
	Inductive Datatypes
	Operations and Recursive Functions
	Examples of Proofs

	How to Trust Proof Automation
	Heyting-Kolmogorov Semantics
	Curry-Howard Isomorphism
	Examples of Proof Automation

	Bonus

