Numbers in Coq

Yves Bertot

June 2023

The situation of numbers in the Coq system

Computation is a strong design attractor for Coq

- Incentive to reason about algorithms
- Being able to run these algorithms is nice
- Even more so with reflective tactics
- Tacticts that rely on internal computation

Many choices of data structures for representing integers and natural numbers

- Peano approach: 0 and successors
- base and position representations
- Sequences of digits or bits
- Preference for binary
- Also possible to use binary tree representations

Ease of programming dependent on the choice of data structure

- Bare metal inductive type theory

Most advanced: computation with real numbers

WARNING: not available in JsCoq

- Challenge: a pocket calculator says that $e=2.71828182 \ldots$ and $\pi=3.14159265 \ldots$
- What is the sign of $3.14159265 e-2.71828182 \pi$?

Require Import Reals Interval.Tactic Lra.

Open Scope R_scope.

Lemma real_exercise :

$$
0<3.14159265 * \exp 1-2.71828182 * \mathrm{PI} .
$$

Proof. interval. Qed.

The case of real numbers

Real numbers outside of the Coq-computable world

- Proof-based computation is still available
- Computing approximations
- Fallible computations

How does it work?

- Real numbers are in a type "assumed to exist", with $0,1,+$, \ldots. and complete archimedian field properties,
- e^{x} is defined as $\sum_{i=0}^{+\infty} \frac{x^{i}}{i!}$
- $\cos x$ is defined as $\sum_{i=0}^{+\infty} \frac{(-1)^{i} x^{2 i}}{(2 i)!}$
- $P I$ is defined as twice the first positive root of cos.
- An extra theorem shows PI $=4\left(4 \operatorname{atan} \frac{1}{5}-\operatorname{atan} \frac{1}{239}\right)$
- If the input is rational, each power series computation only uses rational numbers
- Intervals are computed at each step, and then combined
- The method has weaknesses, but works well in many cases

Weakness of the interval approach

Require Import Reals Interval.Tactic Lra.

Open Scope R_scope.

Lemma real_exercise2 x :
$1 / 2$ ~ $10<=x<=1->0<=x-\sin x$.
Proof.
intros xint.
interval_intro (x - sin x) with
(i_decimal, i_prec 120, i_bisect x, i_depth 8).
(* Long time of computation, result lower bound below 0 *)
interval_intro (x - sin x) with
(i_decimal, i_taylor x, i_prec 120, i_bisect x, i_depth
lra.
Qed.

Didactic issues with interval

- Does not let the student practice skills
- Domain of practical application difficult to understand
- This requires acquiring some skills, non-mathematical
- Useful to have for menial goals, but it feels too powerful

Rational numbers

- Use of the Compute command.
- Rational numbers are encoded as pairs of a signed integer and a positive number
- Exact operations are provided (no square root)
- Results are not normalized (for efficency reason)
- The normalization function must be called explicitely
- There is a specific equality for rational numbers, noted $==$

Rational numbers are under-appreciated

- There are comparatively less theorems than for real numbers or integers
- Equality between rational numbers is only treated as an equivalence relation
- Naked eye comparison is uncomfortable

Binary integers

- A specific datatype to represent positive integers (no size limit)
- A wrapper to add signs: two types positive and Z
- Clumsy recursion: recursive calls are only available for half numbers
- Good enough for usual operations: +, *, /, square root,
- Clumsy for gcd, factorial
- Proof by induction requires more skill than for natural numbers
- The workhorse for many computation tools in Coq, including numeral notations in real numbers

Examples with integers

Require Import ZArith.
Open Scope Z_scope.
Check xO (xI xH).
(*representation for 6, as positive number*)

Check Zpos (xO (xI xH)).
(*representation for 6, as a signed integer *)

Definition Zfactorial (x : Z) :=
snd (Z.iter x (fun $(x, f)=>(x+1, f * x))(1,1))$.

Compute Zfactorial 6. (* returns 720 as expected *)

Compute Zfactorial 100.
(* returns a huge number, no notable delay *)

Example proof with integers

- $\sqrt{2}$ is not rational
- Rephrased with integers:

$$
\forall p q, 0<q<p \rightarrow 2 * q^{2}=p^{2} \rightarrow \text { False }
$$

- sketch of the proof, if p is a minimal integer such that the equality holds, then p is even, and then the equality holds for q and $p / 2$
- The key step is that if the square of p is even, then p is even, this take some time to express with existing theorems.
- Untold assumptions in this sketch are that p and q are positive (in particular, non-zero)

Demo time

DEMO

