
Numbers in Coq

Yves Bertot

June 2023

1 / 13



The situation of numbers in the Coq system

Computation is a strong design attractor for Coq

I Incentive to reason about algorithms

I Being able to run these algorithms is nice
I Even more so with reflective tactics

I Tacticts that rely on internal computation

Many choices of data structures for representing integers and
natural numbers

I Peano approach: 0 and successors
I base and position representations

I Sequences of digits or bits
I Preference for binary
I Also possible to use binary tree representations

Ease of programming dependent on the choice of data structure

I Bare metal inductive type theory

2 / 13



Most advanced: computation with real numbers

WARNING: not available in JsCoq

I Challenge: a pocket calculator says that e = 2.71828182 . . .
and π = 3.14159265 . . .

I What is the sign of 3.14159265e − 2.71828182π ?

Require Import Reals Interval.Tactic Lra.

Open Scope R_scope.

Lemma real_exercise :

0 < 3.14159265 * exp 1 - 2.71828182 * PI.

Proof. interval. Qed.

3 / 13



The case of real numbers

Real numbers outside of the Coq-computable world

I Proof-based computation is still available

I Computing approximations

I Fallible computations

4 / 13



How does it work?

I Real numbers are in a type “assumed to exist”, with 0, 1, +,
. . . , and complete archimedian field properties,

I ex is defined as
∑+∞

i=0
x i

i!

I cos x is defined as
∑+∞

i=0
(−1)ix2i
(2i)!

I PI is defined as twice the first positive root of cos.

I An extra theorem shows PI = 4(4atan 1
5 − atan 1

239)

I If the input is rational, each power series computation only
uses rational numbers

I Intervals are computed at each step, and then combined

I The method has weaknesses, but works well in many cases

5 / 13



Weakness of the interval approach

Require Import Reals Interval.Tactic Lra.

Open Scope R_scope.

Lemma real_exercise2 x :

1 / 2 ^ 10 <= x <= 1 -> 0 <= x - sin x.

Proof.

intros xint.

interval_intro (x - sin x) with

(i_decimal, i_prec 120, i_bisect x, i_depth 8).

(* Long time of computation, result lower bound below 0 *)

interval_intro (x - sin x) with

(i_decimal, i_taylor x, i_prec 120, i_bisect x, i_depth 10).

lra.

Qed.

6 / 13



Didactic issues with interval

I Does not let the student practice skills
I Domain of practical application difficult to understand

I This requires acquiring some skills, non-mathematical

I Useful to have for menial goals, but it feels too powerful

7 / 13



Rational numbers

I Use of the Compute command.

I Rational numbers are encoded as pairs of a signed integer and
a positive number

I Exact operations are provided (no square root)

I Results are not normalized (for efficency reason)

I The normalization function must be called explicitely

I There is a specific equality for rational numbers, noted ==

8 / 13



Rational numbers are under-appreciated

I There are comparatively less theorems than for real numbers
or integers

I Equality between rational numbers is only treated as an
equivalence relation

I Naked eye comparison is uncomfortable

9 / 13



Binary integers

I A specific datatype to represent positive integers (no size
limit)

I A wrapper to add signs: two types positive and Z

I Clumsy recursion: recursive calls are only available for half
numbers
I Good enough for usual operations: +, *, /, square root,
I Clumsy for gcd, factorial

I Proof by induction requires more skill than for natural
numbers

I The workhorse for many computation tools in Coq, including
numeral notations in real numbers

10 / 13



Examples with integers

Require Import ZArith.

Open Scope Z_scope.

Check xO (xI xH).

(*representation for 6, as positive number*)

Check Zpos (xO (xI xH)).

(*representation for 6, as a signed integer *)

Definition Zfactorial (x : Z) :=

snd (Z.iter x (fun ’(x, f) => (x + 1, f * x)) (1, 1)).

Compute Zfactorial 6. (* returns 720 as expected *)

Compute Zfactorial 100.

(* returns a huge number, no notable delay *)

11 / 13



Example proof with integers

I
√

2 is not rational

I Rephrased with integers :
∀pq, 0 < q < p → 2 ∗ q2 = p2 → False

I sketch of the proof, if p is a minimal integer such that the
equality holds, then p is even, and then the equality holds for
q and p/2

I The key step is that if the square of p is even, then p is even,
this take some time to express with existing theorems.

I Untold assumptions in this sketch are that p and q are
positive (in particular, non-zero)

12 / 13



Demo time

DEMO

13 / 13


