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Historical milestones in the teaching of proof
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(1) History in a nutshell, the origin
Euclid, seed of proof in mathematics
• The seed of modern proof in maths: Euclid (circa 300 BC)

• the ideal of rigour of a theoretical foundation
• Inseparable from Geometry: duality of reasoning and perception

• The Euclidean norms in force until the middle of the 20th century
• Critics:

• Descartes (1628): the Euclidean ideal favours conviction over understanding. 
• Dechalles (1709): to add indications of the use of each proposition!
• Clairaut (1741): to make use of practical geometry to provide meaning, but 

refuses to be a treatise on surveying. Clairaut refuses to demonstrate the 
obvious.

Until the French Revolution, Euclid's geometry was taught to a 
privileged class of the population, those "who dabbled in mathematics"; 
After the Revolution, this teaching became part of a national education 
project that took shape in the first half of the 19th century.
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(2) History in a nutshell, the 19th century) 
Birth of "public" education

The massive expansion of education gave rise to the need for basic textbooks
 first didactic transpositions (ref. to institutions) 
Break between practical and theoretical geometry (public education project, 
1793)
Geometry close to Euclid's model is taught to those (men) who want to go on to 
university.

• Legendre (1794): « efforts to give the ‘démonstrations’ all the clarity and brevity that 
the subject requires »  a said « rival of Euclid »

• Lacroix (1798) to promote understanding in relation to applications, to link
understanding and proving, national reference, his book is a textbook.

Legendre and Lacroix define the meta-terms: theorem « which become obvious 
through demonstrations » (Legendre), « statements which must be
demonstrated »(Lacroix). 

 but démonstration itself is not one of the defined terms.
At the end of the 19th century, proof was a named object: the "démonstration" *

It was not an object of teaching. 
(*) The English word Demonstration was replaced in curricula by the word Proof in the course of the 20th century
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(3) History in a nutshell, 1st half of the 20th century
Mathematician, a profession  
Economic and industrial development
Birth of the mathematics community

• 1893 separation from astronomy
• 1897 first congress of mathematicians
• 1899 creation of "L'enseignement mathématique".
• 1908 creation of ICMI 
• 1911 a report on degrees of rigour

• A) Entirely logical method ; B) Empirical foundations, logical development ; 
C) Intuitive considerations alternate with the deductive method ; D) Intuitive-
experimental method 

• 1920 Creation of the IMU in Strasbourg
• 1969 First ICME conference in Lyon
• 1977 First PME conference in Utrecht

Proof has the status of a mathematical tool to be taught
It is taught through geometry.
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(4) History in a nutshell, 2nd half of the 20th century
Proof emancipates itself from geometry  

Mathematics is
• present in all areas of science (natural sciences, humanities social sciences) 
• seen as a universal language

Mathematics from Kindergarten to University (e.g. APMEP 1967)*
 Period 1, modern mathematics :

• Mathematics is a deductive science, not an experimental one. 
• Mathematics is a theory that must bring together under a single structure 

knowledge that was previously presented in a scattered manner. 
 Period 2, giving up on modern mathematics (70s in the USA, early 80s )

 emphasis on problem solving, applications of the discipline.

No return to Euclid
Since the early 2000s: make mathematics the place for genuine research: 
develop the ability to reason and argue, experiment and imagine.

Mathematical proof is losing ground to deductive reasoning, 
 a broader concept of validation in mathematics teaching

(*) French association of mathematics teachers
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(5) History in a nutshell, the 21st century
Proof from kinderkarten to university  

2003 Justify/Prove "Provide proof for the validity of an action or the truth of a statement by 
reference to mathematical results or properties; develop mathematical 
arguments to prove or disprove statements, given relevant information." 
(TIMSS 2003 p. 33)

2007 Justify "Provide a justification for the truth or falsity of a statement by reference to 
mathematical results or properties" (TIMSS 2007 p. 38).

2019 Justify "Provide mathematical arguments to support a strategy or solution." (TIMSS 
2019 p. 24)

TIMSS Assessment framework documents, grades 4 and 8 (càd CM1 & 4°)

TIMSS distinction between…
• content domains: specific mathematics subjects matter
• the cognitive domains: sets of expected students’ behaviors

Reasoningmaking deductions based on specific assumptions and 
rules, and justifying results. 
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A glimpse of the Technology Enhanced Learning 
(TEL) of proof history
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(1) ATP & precursors of proof tutors (the 50’s)
Focus on modeling human reasoning with a view to implementing 
mathematical logic. 

• The Logic Theorist based on the Principia Mathematica, on mathematicians' 
introspection observation of students solving proof problems in symbolic logic

• The General Problem Solver, an improved model to face demanding challenges:
“problem solving is the battle of selection techniques against a space of possibilities that keeps 
expanding exponentially” (Simon, Shaw, Newell). 

• The Geometry Machine, limited domain and search for specifics heuristics that 
could model the discovery of proofs in elementary Euclidean plane geometry with a 
pragmatic approach:
[T]he machine is granted the same privileges enjoyed by the high-school student who is always 
assuming (i.e., introducing as additional axioms) the truth of a plethora of ‘obviously self-
evident’ statements concerning, for example, the ordering properties of points on a line and the 
intersection properties of lines in a plane. (Gelernter)

Several issues:
• the depth of the gap between machine and human ways of reasoning, 
• the multiplicity of representations in geometry (reasoning based on visualization)
• the constraints on human–machine communication

The convergence of ATP and educational technology failed short.

9/62Newell & al. 1959; Gelernter 1959



(2) Proof tutors, the cognitive approach (the 70-90’s)

Building a theorem prover is an exciting alternative to the usual 
classroom presentation (Goldstein)

• Representations of procedural knowledge
• Objective to implement a 'natural' formalism of mathematical knowledge.
• Reasoning strategy: model backward Vs forward model 

prepared the ground for Geometry Tutor (Anderson & al.1985)
• based on theoretical analysis of the characteristics of the problem domain and 

on empirical observation of students’ behavior
• It included 

• “ideal models” in order to generate proofs in a natural way
• “buggy models” to diagnose student errors as production rules
• immediate feedback to keep students on the right track

Cognitive tutors include (Anderson &  al.1995).
• cognitive model of the content to be learned
• scaffold strategies for feedback and advice The Angle Project (Koedinger & al. 

1990) which gave a more active role to diagrams

10 /62Goldstein 1973;  Anderson et al. 1985, 1995; Koedinger et al. 1990



(3) Proof tutors, the emergence of the interface
ATP research focused on computational models
the Geometry Tutor project recognizes that 

• “placing interface design ahead of production–systems design 
represents a major restructuring of our approach to tutor construction” 
(Anderson et al., 1995, p.35). 

• Beneath the interface, the implemented models must ensure that 
communication makes representations accessible to students and enables 
interactions that enhance learning

Long-term goal to build an intelligent tutoring system for elementary 
geometry: 

Any proofs and constructions found by our automated geometry theorem prover 
[GRAMY] must be stated with the common ontology of the axiomatized geometry 
system taught in schools. (Matsuda & VanLehn)

• To comply with the constraints of the interface, and the professional responsibilities of 
teachers. 

• The desired geometry theorem prover must not only be able to find a single 
comprehensible proof, it should also be able to find all proofs that are considered 
acceptable to instructors

11 /62Anderson et al. 1995; Koedinger et al. 1990, Matsuda et al. 2004, 2005



The concept of microworld
1960s: Minsky began thinking about modelling knowledge and reasoning. 

He invited Papert to join him at MIT in 1963. 
AI research combines computer and cognitive modelling

1970s: the concept of microworld is born of the idea that:
• Rather than looking for a general representation, develop "mini-theories" that could be 

articulated to model complex phenomena
• New math occults The mathematical experience
• Responsibility of computer scientists : 

The computer scientist is the proprietor of the concept of 
procedure, the secret educators have so long been seeking 
(Minsky, 1969).

The microworld concept is the product of
• AI research (vision and robotics, the concept of mini-theory)
• A critical reflection on the New Math movement
• A principle: modelling should focus on action and not on logical formalization. 

LOGO is the first proof of concept

12 /62Minsky and Papert 1970



Microworlds and Proof
Microworlds provide students with a field of experience for…

• Exploring mathematical facts
• Making conjectures
• Shaping argumentations
• Proposing proofs
(Boero et al. 1995, Baccaglini-Frank & Mariotti, 2010).

Logo
Programming language with visual feedback
Language primitives: move, turn
Differential geometry

Geometric supposer, 
“An intellectual prothesis for making conjectures” 
Rule and compass, Euclidean geometry
Help understand that a picture is a special case, part of a larger process

Cabri-géomètre
Construction with tools implementing Euclidean geometry objects and properties 
(instrumental axioms)
Maintains properties in direct manipulation
Visual feedback (invariance) and oracles

Dynamic geometry environments
DGE

13 /62Boero et al 1995; Baccaglini et al. 2010



ATP augmented microworlds
DGE are not illustrations but “living” objects within an evolving world
ATP can provide services for…

• Providing counter examples or textual critics
• Providing feedback on a textual representation of a solution
• feedback of a textual or a visual form
• scaffolding the writing of a proof, 

e.g. GeoGebra “[can answer] a query posed by a user about the truth or falsity of any geometric statement” or “present 
further hypotheses that should be considered for the proposition to become true" (Hauer, Kovács, Recio, & Vélez, 2018, 
p.2). 

• Cabri (Laborde 1990)
• Cabri-Euclide (Luengo, 1997)
• Baghera (Balacheff et al. 2000)
• Agent-geom (Richard 2007)
• Geogebra (Hohenwarter 2002)
• GeoProof (Narboux 2006)
• …/…
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Lesson 1: formal versus informal mathematics
The history of the teaching of proof and of the contribution of 
educational technology suggests 

• An initial “common sense” idea that teaching the norm will improve 
understanding the role of proof as a concept and a tool

• An evolution which search for linking the norm of the discipline and the 
meaning of its object, mathematics

A controversy about the relationships between formal and 
informal proof: 

• (1) the claim that “There is a formal analogue of a purported informal 
mathematical proof or else the latter fails to be a proof.” (Azzouni, 2009, p. 14), 

• (2) the claim that “mathematical proofs are cemented via arguments based on 
the meaning of the mathematical terms that occur in them, which by their very 
conceptual nature cannot be captured by formal calculi.” (Rav, 2007, p. 294). 

« Every mathematician knows that a proof is not truly "understood" as long as one 
has limited oneself to verifying step by step the correctness of the deductions that 
appear in it, without trying to clearly conceive the ideas that led to the construction 
of this chain of deductions in preference to any other. » (Bourbaki, 1948, p. 37 n.1)

15 /62Azzouni 2009; Rav 200; Bourbaki 1948



Lesson 1: deduction and meaning

Formal in mathematics, distinguishes three facets:
• Facet 1 “concerns the form of mathematical sentences, as 

structured syntactical objects independently of their intertextual 
contexts”

• Facet 2 “concerns the way mathematics is presented as a final 
product, in a formalised language, generally contrasted with that 
after which results are found by mathematicians”

• Facet 3 “concerns the very notion of logical consequence”
(Arzarello 2007 p,43)

The essence of the issue is the relationships between 
• conceptual proofs with a semantic content, usual in practice
and 
• derivations, that is syntactic objects of some formal system

16 /62Arzarello 2007



 Lexical and conceptual clarification
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Source:
Balacheff N. (2021) The transition from mathematical argumentation to mathematical proof, a learning and teaching challenge. 
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Choosing the words
Reasoning

Organization of statements that is oriented towards modifying  the epistemic value of a target statement
 The need to construct of coherence and belonging of the new statement to the knowledge system (the known)

Explanation
A system of relationships within which the target statement finds its place with respect to the known. It establishes 
the validity of the target statement

Argumentation is a discourse
Oriented - it aims at the validity of a statement
Intentional - it seeks to modify a judgment
Critical - it analyzes, it supports or defends

Proof
An argumentation accepted by a given community at a given time. 
It requires a system of validation common to the interlocutors.

Mathematical proof (fr. démonstration)
An argumentation structured according to rules conforming to a standard established by mathematicians 
a statement is known as true, or is being true, or is deduced from those which precede it with the help of an inference 
rule taken from a well-defined set of rules.

Formal proof 
“A formal proof is a finite sequence of well-formed expressions following a strict grammar and a vocabulary devoid 
of ambiguity, each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence by 
a rule of inference.”
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Explanation – Argumentation – Proof 
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argumentation proofExplanation

private public

demonstration

Espace 
debate

Speech (orientation (towards others), 
intention (to gain acceptance of validity), 
criticism (anticipate objections and 
agreements))

clarification, organisation 
within a knowledge system 

heuristic argumentation
 target (epistemic value)

re
so

lu
ti

on argumentation validated collectively 
 some will not be validated and will 
remain in the collective space of 
debate (conjecture)

Argumentation that meets the 
standard of demonstration

The fact that a 
proof can be 
- not shared
- shared
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 Interlude… two cases to ponder
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Example 1, the case

31. Vincent : the area is always divided by 2…so, at 
the limit? The limit is a line, the 
segment from which we started …

32. Ludovic : but the area is divided by two each time
33. Vincent : yes, and then it is 0
34. Ludovic : yes this is true if we go on…
37. Vincent : yes, but then the perimeter …  ?
38. Ludovic: no, the perimeter is always the 

same
41. Vincent: It falls on the segment… the circles 

are so small.
42. Ludovic: Hmm… but it is always 2πr.
43. Vincent: Yes, but when the area tends to 0 it 

will be almost equal…
44. Ludovic: No, I don’t think so.
45. Vincent: If the area tends to 0, then the 

perimeter also… I don’t know… 
46. Ludovic: I will finish writing the proof.

21

A B

Construct a circle with AB as a diameter.  Split AB in two 
equal parts, AC and CB.  Then construct the two circles of 
diameter AC and CB… and so on.  

How does the perimeter vary at each stage?  
How does the area vary?”

Pedemonte 2016 /62



Example 1, analysis

22

The symbolic 
representation works 
as a boundary object
adapting the different 
meanings but being 
robust enough to work 
as a tool for both 
students.

The differences lie in 
the control grounding 
their activity.  

Algebraic frame

area /perimeter

formula
Ludovic

Algebraic
conception

Vincent
symbolic-arithmetic

conception

Pedemonte 2016 /62



Case 2: series of continuous functions

un and x are two variables, but x is the 
independent variable on which depends 
un

 the notion of function can be both 
practically close to the modern one and 
conceptually reflect the dominant 
understanding of the time

23

x is not explicit in the writing

Arsac 2013 /62



Case 2: series of continuous functions

 Cauchy did not pretend that this is a 
mathematical proof, as he used to do 
elsewhere in the course, but a remark.

The notion of a “infinitely small” is 
dynamic: an infinitely small variable is a 
variable which has zero as a limit 

24

The notion of limit is controlled by a 
kind of kinematic “concept image” 
(inherited from Neper and Newton and 
common at that time)

Arsac 2013 /62



Case 2: series of continuous functions

25Arsac 2013

x 

• the variable x remains implicit in 
the expression [again embedded 
in the terms of the series]

• the order of the text is not 
congruent to the logical order it 
expresses

• n depends on ε and not on x 
∀ε ∃N ∀x 

• This is a non-modern expression 
of the Cauchy criterion of Uniform 
convergence

∀ε ∃N ∀x ∀n>N  ∀ n’>n  |sn-s n’ |< ε
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Case 2: series of continuous functions

26Arsac 2013

x 

 A text makes closer to a 
remark than to a 
mathematical proof in the 
modern way. 
 The rigor is there, as a 

willing, but it encounters 
obstacles: 
• the algebraic formalism of 

Calculus is not yet available
• the kinematic concept image is 

still dominant in the 
mathematical community of 
that time.

but isn’t rigor always a willing?

∀ε ∃N ∀x ∀n>N  ∀ n’>n  |sn-s n’ |< ε

/62



Example 2: analysis
Gibert Arsac interpretation of Cauchy’s understanding is based 
on a critical and rigorous analysis of the text taking into account 
the situation of Calculus in the first half of the XIX° century: 
1. The notion of variable dominates the notion of function 

(dependent variable) with a kinematic vision of convergence 
which impact the concepts of limit and continuity

2. Inequality (<, >) is rarely used and the algebraic notation of 
absolute value is absent

3. Still under construction, continuity is being defined on an 
interval and not at a point, tightly linked to a vision of the 
graphical continuity of a curve. 

4. Quantifiers are not in use (one has to wait for the XX°
century) making difficult to identify the dependences 
introduced by their order in a statement, and the negation of 
a statement which involves them (e.g. discontinuity as a 
negation of continuity)

27Arsac 2013 /62



From interpretation to modelling
A paraphrase of Henri Poincaré (1905, p,17):

it is not the mathematical principle of rigour that changes over history, nor the principle 
of the practice of active mathematicians that differs, but the consequence of the 
deepening of mathematical knowledge and the evolution of mathematical tools.

Four lines of analysis drive the interpretation and may allow to model the 
understanding underpinning the case of Cauchy’ concept of uniform 
convergence:

- the nature of the problem addressed (convergence of series of continuous 
functions)

- the available tools to solve this problem which include those to manipulate rational 
numbers, variables, function, limit, continuity

- the semiotic systems including natural language, algebraic representation as 
available at that time, representation of curves

- the controls like the Leibniz law of continuity, the repertoire of known functions

Mathematicians do what they do, 
because their objects are what they are

28/62Poincaré 1905



Understanding student’s understanding
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What about misconceptions?
Misconceptions, naïve theories, beliefs have been largely documented in an attempt to 
make sense of learners’ errors and contradictions

30

« ƒ is defined by f(x) = ln(x) + 10sin(x)
Is the limit + ∞ in + ∞? »

with a graphic calculator 25% of errors
without a graphic calculator 5% of errors

(Guin & Trouche 2001)

Human beings have conceptions which are adapted and efficient 
in different situations they are familiar with. 
• They are not naïve or misconceived, nor mere beliefs. 
• They are situated and operational in adequate circumstances.

/62Guin et Trouche 2001
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Interpreting representations

31

Egyptian computation of 1/5 

For 4055/4093 one will get the shortest and unique 
additive decomposition:
[1/2 + 1/3 + 1/7 + 1/69 + 1/30650 + 1/10098761225]

Unfortunately, Egyptians could not write the last term.

What is denoted by the signs are parts of 
the whole, hence integers but integers 
which could not be added as integers are.
Scribes used tables to establish the 
correspondence between two numbers to 
be multiplied and to get the result. 

/62*****



Addition, from fingers to keystrokes

C1: Verbal counting IIIII & III
P  – Quantify union of two sets, objects are 
physically present, both cardinals are small.
R – match fingers or objects and number 
names, pointing objects
L – body language, counting
Σ – not counting twice the same, counting 
all, order of the number names

C3: written addition 381+97
P – adding two integers
R – algorithm of column addition
L – decimal representation of numbers
Σ – check the implementation of the
algorithm, check the layout of  number 
addition

C 2: Counting on 15+8
P – The numbers are given, but the 
collections are not present, one of the 
numbers must be small enough
R – choose the greater number, count-on to 
determine the result.
L – body language, number naming, verbal 
counting.
Σ – order of the number names , match 
fingers to number names

C4: Pocket calculator 
P – adding two integers
R – keystroke to represent a number, to 
process number addition
L – body language (keystrokes),  decimal 
representation of numbers on the screen
Σ – keystrokes verification, order of 
magnitude.

These are different conceptions of addition

/6232



 Semiotic discussion: object and representation

33

Source:
Caveing M. (2004) Le problème des objets dans la pensée mathématiques. Paris: Vrin
Duval R. (2018) Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations. Springer 
Cham
Vergnaud, G. (1981). Quelques orientations théoriques et méthodologiques des recherches françaises en didactique des 
mathématiques. Recherche en didactique des mathématiques, 2(2), 215-231.
Tall, D. (2004). Thinking through three worlds of mathematics. Proceedings of the 28th Conference of the International Group 
for the Psychology of Mathematics Education, 4, 281-288.
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A mathematical object is never available
A mathematical object is a ‘being’ that is never available through its presence, but 
through the mediation of a regulated system of designations that make it accessible. 
(Maurice Caveing, 2004)

34

signified

signifier

meaning
reference

representation

object
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A mathematical object is never available

signified

signifier

meaning
reference

representation

object

signifié

signifiant

signification
référence

représentation

objet
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A mathematical object is…

signifié

signifiant

signification
référence

représentation

objet

x²+y²=r²

signified

signifier

meaning
reference

representation

object
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Semiotic register
A mathematical object is a ‘being’ that is never available through its presence, but through the 
mediation of a regulated system of designations that make it accessible. 
(Maurice Caveing, 2004)

Proof assistant

The mathematical object as an 
invariant between semiotically 
heterogeneous representations.

The questioning about the validity of the truth of a statement, takes shape 
in this semiotic context.
A semiotic register

(i) tangible traces identifiable as representations of something,
(ii) transformation rules to produce other representations that can contribute to 

knowledge,
(iii) conversion rules to another representation system to make other significations 

explicit,
(iv) conformity rules for constituting higher-level units that can contribute to the 

evolution of knowledge
Semiotic registers are a key component of 
a conception of  a mathematical object

37

x²+y²=r²
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Modeling mathematical conceptions

38

• Learner are first persons with their emotions, social 
commitments, imagination, personal history, cognitive 
characteristics. They live in a complex environment 
which has physical, social and symbolic characteristics.

• For the sake of the modeling objective and 
with in mind the practical limitations it will 
entails…

• Learners are considered here as the

• epistemic subjects
• The environment is reduced to those features 

that are relevant  from an epistemic 
perspective:

• the milieu
• the learner’s antagonist system in the problem solving 

and learning process 

38

action

feedback

constraints

S M

(Balacheff 1995, 2013)
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Modeling mathematical conceptions

39

• Learner are first persons with their emotions, social 
commitments, imagination, personal history, cognitive 
characteristics. They live in a complex environment 
which has physical, social and symbolic characteristics.

• For the sake of the modeling objective and 
with in mind the practical limitations it will 
entails…

• Learners are considered here as the

• epistemic subjects
• The environment is reduced to those features 

that are relevant  from an epistemic 
perspective:

• the milieu
• the learner’s antagonist system in the problem solving 

and learning process 

39

action

feedback

constraints

S M

A conception is the state of 
dynamical equilibrium of an 
action/feedback loop between 
a learner and a milieu under 
proscriptive constraints of 
viability

(Balacheff 1995, 2013)
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Modeling mathematical conceptions

a conception is characterized 
by a quadruplet (P, R, L, Σ) 
where: 

• P is a set of problems (sphere of practice)

• R is a set of operators.
• L is a representation system 

(which may be a semiotic register)

• Σ is a control structure. 

40

action

feedback

constraints

S M

the quadruplet is not more related to S than M: the representation 
system allows the formulation and use of operators by the active sender 
(the user) as well as the reactive receiver (the milieu); the control 
structure allows assessing action (S), as well as selecting a feedback (M).

(Balacheff 1995, 2013)
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Addition, from fingers to keystrokes

41

set of problems  problems for which the 
conception provides efficient means 
operators  actions at the interface of the 
learner/milieu system;
representation system  semiotic means to 
represent problems, support interaction and 
represent operators
control structure  making choices, assessing 
action and feedback, taking decisions, judging the 
advancement of the problem or task

These are different conceptions of addition
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Controls and representation

42

C is false from the point of view of C’ if it exists a function of 
representation ƒ: L→L’, and it exists a problem in P which 
solution ζ it true following C but  ƒ(ζ) is false following C’ 

A B

C
D

“Generality” and “falsity” are not properties of conceptions but relations between 
conceptions whose validity depends on the translation from one system of 
representation to the other.

This is often hidden by the fact that we tend to read the production 
and the processes learners (or past mathematician) carry out directly 
in “our” mathematical terms. 

S = [(AB+DC)/2]x[(AD+BC)/2]

A method used by sugar-cane farmers in 
Brazil to find the areas of their fields were 
to find the average lengths of the opposite 
sides and multiply the  averages together. 

Guida de Abreu
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Conception, knowing and concept
Are two conceptions referring to the same “object”?

Difficult question in mathematics where the only tangible things available 
are representations, but Vergnaud’s postulate (1981) offers a solution:

problems are sources and criteria of knowing
(fr. Connaissance)

Let C, C’ and Ca be three conceptions such that it exists functions of 
representation ƒ: L→La and ƒ’: L’→La

[C and C’ have the same object with respect to Ca if for all p from 
P it exists p’ from P’ such that ƒ(p)=ƒ’(p’), and reciprocally]

Conceptions have the same object if their spheres of practice can be 
matched from the point of view of a more general conception

 in practice, it is the conception of the researcher/teacher
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Tall’s cognitive worlds
Tall three forms of cognitive development of mathematical objects 

• An embodied world produced by the thinking about things that we perceive 
materially or mentally, supported by the use of increasingly sophisticated 
language

• A proceptual world made of symbols and processes on symbols expressing 
operations on more and more abstract mathematical concepts.

• A formal world based on object defined by properties, expressed in terms of 
formal definitions to form the axiomatic formalism needed to specify 
mathematical structures. 

Working in a formal world gives rise to new material or mental realities, turning 
mathematical concepts into objects that can be manipulated and explored. 

This transformation underpins a new embodied world within 
which will be born new concepts and new symbolisms. 

In each world, the question of truth is addressed and solved by means that are 
appropriate to the available representations, ways of processing them, shaping 
justifications and “warrants for truth”.

The tool-object dialectic
(Douady 1986)
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 Proof, an elusive concept

45

Source:
Balacheff, N. (preprint). Mathematical Argumentation, a Precursor Concept of Mathematical Proof. Proceedings ICME14 
Invited Lectures, 17.
Mariotti, M. A. (2006). Proof and proving in mathematics education. In Á. Gutiérrez & P. Boero (Éds.), Handbook of Research 
on the Psychology of Mathematics Education (p. 173-204). Sense Publishers.
Stylianides, A. J. (2007). Proof and Proving in School Mathematics. Journal for Research in Mathematics, 38(3), 289-321.
Weber (2018) Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations. Springer Cham
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Proof… What do you mean?
Institutional definition: 
Proving is a competency (set of expected behaviors) in the Reasoning category: 

making deductions based on specific hypotheses and rules, and justifying the results.

Empirical case studies of mathematicians norms or of their disagreements illustrate the limits 
of claiming unanimous consensus about what counts as proof (Weber):

• They are virtually unanimous about the validity of typical proofs (those of students) 
• They can strongly disagree about atypical and innovative proofs

A discipline-based consensus:
A theorem is acceptable because it is systematised within a theory, with a 
complete autonomy from any verification or argumentation at an empirical level
(Mariotti):

Theorem  (Theory, Sentence, Proof)

A human factor in mathematicians recognition of what counts as proof: belief and 
trust, understanding and insight, required level of rigor and explicitness, etc.
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A cluster-definition of mathematical proof
A characterisation of proof which discriminates argumentations 
accepted as proof from those which are not

1. A proof is a convincing argumentation that will remove all doubt that 
a theorem is true for a knowledgeable mathematician.

2. A proof is a perspicuous argumentation (clear and precise) that is 
comprehensible by a knowledgeable mathematician and provides 
an understanding of why a theorem is true.

3. A proof is an a priori argumentation that shows that a theorem is a 
deductive consequence of axioms, assumptions and/or previously 
established claims.  Deduction

4. A proof is a transparent argumentation where any sufficiently 
knowledgeable mathematician can fill in every gap […] perhaps to 
the level of being a formal derivation.

5. A proof is an argumentation that has been sanctioned by the 
mathematical community.                   Authority
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Czocher & Keith Weber
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A cluster-definition of mathematical argumentation

For a characterization viable in the changing contexts of the 
mathematics curicula

Mathematical argumentation is a multimodal text which is 
built in support to the truth of a sentence and contextualised 
by a state of knowledge
It requires each of the following components to be at least 
partly satisfied and sanctioned by the teacher:

• An explicit knowledge base established by and for the classroom 
community (including students and the teacher)

• A linguistically appropriate sentence, semantically adequate, of a 
general stance;

• A structurally coherent argumentation, ethically minded, congruent to 
students’ conceptions, linking the sentence to the knowledge base.
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Balacheff 2021
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• In problem-solving, controls predicate upstream of a decision

• In the construction of an argumentation 
(discursive organisation, epistemic value)

• In a standardized argumentation in mathematics
(discursive form, ontic reduction)

mathematical argumentation 
Weak discursive distance between argumentation and mathematical proof (Duval 1992)

institutionalisation of forms of proofs

49

Three regimes of controls
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Types of “argumentation” in the math classroom

50

A form of proof reflects
 a principle of economy of logic.
 the available conceptions

Balacheff 1987, 1988

The meaning of a validation process cannot be 
grasped without examining the conceptions that
students mobilise, and the way they read the situation 
in which they find themselves. 
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generalisation and 
construction of 
probationary nature 

rethorics  heuristics
epistemic  ontic

Generic example
The challenge of representations

 objects
 relationships

Explanation of reasons
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 Concluding comments
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Which knowledge emerges from PATeaching: on PAT? on logic? on mathematics
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Learning with a Proof Assistant
PAT characteristics

• The set of problems that the system can pose, in relation to the knowledge at 
stake in the learning process

• The actions that are possible with the available PAT tools
• The controls that the user can have on his decision and on managing 

feedback 
Assess and manage the distance between the learner's conceptions and PAT 
conception, especially the semiotic distance
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Teaching?
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PATeaching
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What makes the problem problematic: the situation
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Problematisation of knowledge
The question then is: which services can PAT 
provide? 
What kind of feedback while the student is 
engaged in problem solving?
It could target 

• the strategy rather than a particular rule, 
• the related knowledge or the logical sequence, 

It could 
• immediately spot the misuse of a theorem, a flaw 

in reasoning,
• wait to provide a counterexample to the proposed 

proof.
It could be textual and/or visual and, in the 
case of geometry

PAT is the support of a milieu
it has the behaviour of an agent

58

action

feedback

constraints

S M

Problem

Situation

Teaching agent
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Cabri-Euclide

5959Luengo 1997, 1999

- Multiple, linked representation registers
- deductive form, a structuring tool
- Epistemic value of statements

Analyse and compare proofs
as objects

Proof are organisers of knowledge
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Baghera

60

Elève

ATINF
(Inference workshop, RicardoCaferra)

- a logical and algebraic approach to 
the automatic proof of theorems & ...
- process automatic proofs to give an 
intelligible explanation

Manipulation of proof bases and 
counter-examples, discovery of 
analogies, proof plans

student

Teaching agentS
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Very last message…
Along with providing features and functionality for 
mathematicians’ activities PATutors must take three 
additional categories of users into account: 

• the curriculum decision makers (who specify the 
standard of mathematical validation at a given grade), 

• the teachers (who orchestrate learning and decide what 
counts as a proof in relation to a standard), 

• the learners (who are simultaneously constructing an 
understanding of proof and of the related content). 

61

Thank you!
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